Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Impact of velocity- and acceleration-compensated encodings on signal dropout and black-blood state in diffusion-weighted magnetic resonance liver imaging at clinical TEs

Führes, Tobit ; Saake, Marc ; Szczepankiewicz, Filip LU orcid ; Bickelhaupt, Sebastian ; Uder, Michael and Laun, Frederik Bernd (2023) In PLoS ONE 18(10 OCTOBER).
Abstract

Purpose The study aims to develop easy-to-implement concomitant field-compensated gradient waveforms with varying velocity-weighting (M1) and acceleration-weighting (M2) levels and to evaluate their efficacy in correcting signal dropouts and preserving the black-blood state in liver diffusion-weighted imaging. Additionally, we seek to determine an optimal degree of compensation that minimizes signal dropouts while maintaining blood signal suppression. Methods Numerically optimized gradient waveforms were adapted using a novel method that allows for the simultaneous tuning of M1- and M2-weighting by changing only one timing variable. Seven healthy volunteers underwent diffusion-weighted... (More)

Purpose The study aims to develop easy-to-implement concomitant field-compensated gradient waveforms with varying velocity-weighting (M1) and acceleration-weighting (M2) levels and to evaluate their efficacy in correcting signal dropouts and preserving the black-blood state in liver diffusion-weighted imaging. Additionally, we seek to determine an optimal degree of compensation that minimizes signal dropouts while maintaining blood signal suppression. Methods Numerically optimized gradient waveforms were adapted using a novel method that allows for the simultaneous tuning of M1- and M2-weighting by changing only one timing variable. Seven healthy volunteers underwent diffusion-weighted magnetic resonance imaging (DWI) with five diffusion encoding schemes (monopolar, velocity-compensated (M1 = 0), acceleration-compensated (M1 = M2 = 0), 84%-M1–M2-compensated, 67%-M1–M2-compensated) at b-values of 50 and 800 s/mm2 at a constant echo time of 70 ms. Signal dropout correction and apparent diffusion coefficients (ADCs) were quantified using regions of interest in the left and right liver lobe. The blood appearance was evaluated using two five-point Likert scales. Results Signal dropout was more pronounced in the left lobe (19%-42% less signal than in the right lobe with monopolar scheme) and best corrected by acceleration-compensation (8%-10% less signal than in the right lobe). The black-blood state was best with monopolar encodings and decreased significantly (p < 0.001) with velocity- and/or acceleration-compensation. The partially M1–M2-compensated encoding schemes could restore the black-blood state again. Strongest ADC bias occurred for monopolar encodings (difference between left/right lobe of 0.41 μm2/ms for monopolar vs. < 0.12 μm2/ms for the other encodings). Conclusion All of the diffusion encodings used in this study demonstrated suitability for routine DWI application. The results indicate that a perfect value for the level of M1–M2-compensation does not exist. However, among the examined encodings, the 84%-M1–M2-compensated encodings provided a suitable tradeoff.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
PLoS ONE
volume
18
issue
10 OCTOBER
article number
e0291273
publisher
Public Library of Science (PLoS)
external identifiers
  • pmid:37796773
  • scopus:85173678375
ISSN
1932-6203
DOI
10.1371/journal.pone.0291273
language
English
LU publication?
yes
id
0738a9c6-8178-46fa-bfc8-c020c83ba6b6
date added to LUP
2023-12-07 09:28:03
date last changed
2024-04-20 03:50:34
@article{0738a9c6-8178-46fa-bfc8-c020c83ba6b6,
  abstract     = {{<p>Purpose The study aims to develop easy-to-implement concomitant field-compensated gradient waveforms with varying velocity-weighting (M<sub>1</sub>) and acceleration-weighting (M<sub>2</sub>) levels and to evaluate their efficacy in correcting signal dropouts and preserving the black-blood state in liver diffusion-weighted imaging. Additionally, we seek to determine an optimal degree of compensation that minimizes signal dropouts while maintaining blood signal suppression. Methods Numerically optimized gradient waveforms were adapted using a novel method that allows for the simultaneous tuning of M<sub>1</sub>- and M<sub>2</sub>-weighting by changing only one timing variable. Seven healthy volunteers underwent diffusion-weighted magnetic resonance imaging (DWI) with five diffusion encoding schemes (monopolar, velocity-compensated (M<sub>1</sub> = 0), acceleration-compensated (M<sub>1</sub> = M<sub>2</sub> = 0), 84%-M<sub>1</sub>–M<sub>2</sub>-compensated, 67%-M<sub>1</sub>–M<sub>2</sub>-compensated) at b-values of 50 and 800 s/mm<sup>2</sup> at a constant echo time of 70 ms. Signal dropout correction and apparent diffusion coefficients (ADCs) were quantified using regions of interest in the left and right liver lobe. The blood appearance was evaluated using two five-point Likert scales. Results Signal dropout was more pronounced in the left lobe (19%-42% less signal than in the right lobe with monopolar scheme) and best corrected by acceleration-compensation (8%-10% less signal than in the right lobe). The black-blood state was best with monopolar encodings and decreased significantly (p &lt; 0.001) with velocity- and/or acceleration-compensation. The partially M<sub>1</sub>–M<sub>2</sub>-compensated encoding schemes could restore the black-blood state again. Strongest ADC bias occurred for monopolar encodings (difference between left/right lobe of 0.41 μm<sup>2</sup>/ms for monopolar vs. &lt; 0.12 μm<sup>2</sup>/ms for the other encodings). Conclusion All of the diffusion encodings used in this study demonstrated suitability for routine DWI application. The results indicate that a perfect value for the level of M<sub>1</sub>–M<sub>2</sub>-compensation does not exist. However, among the examined encodings, the 84%-M<sub>1</sub>–M<sub>2</sub>-compensated encodings provided a suitable tradeoff.</p>}},
  author       = {{Führes, Tobit and Saake, Marc and Szczepankiewicz, Filip and Bickelhaupt, Sebastian and Uder, Michael and Laun, Frederik Bernd}},
  issn         = {{1932-6203}},
  language     = {{eng}},
  number       = {{10 OCTOBER}},
  publisher    = {{Public Library of Science (PLoS)}},
  series       = {{PLoS ONE}},
  title        = {{Impact of velocity- and acceleration-compensated encodings on signal dropout and black-blood state in diffusion-weighted magnetic resonance liver imaging at clinical TEs}},
  url          = {{http://dx.doi.org/10.1371/journal.pone.0291273}},
  doi          = {{10.1371/journal.pone.0291273}},
  volume       = {{18}},
  year         = {{2023}},
}