Lateral Resistance Reduction to Cold-Formed Steel-Framed Shear Walls under Various Fire Scenarios
(2020) In Journal of Structural Engineering 146(5).- Abstract
This paper examines the structural response of cold-formed steel-framed building lateral force-resisting systems under combinations of simulated earthquake and fire loading. Full-scale experiments with gypsum-sheet steel composite panel sheathed walls, oriented strand board sheathed walls, and steel strap braced walls are presented. Twenty-two test specimens are subjected sequentially to combinations of cyclic shear deformation and fires of varying intensity; some approximate temperatures in standard furnace tests, and most have characteristics of actual building fires. In select tests, the walls are predamaged to simulate fire following an earthquake. The results show a progressive decrease of postfire lateral load capacity with... (More)
This paper examines the structural response of cold-formed steel-framed building lateral force-resisting systems under combinations of simulated earthquake and fire loading. Full-scale experiments with gypsum-sheet steel composite panel sheathed walls, oriented strand board sheathed walls, and steel strap braced walls are presented. Twenty-two test specimens are subjected sequentially to combinations of cyclic shear deformation and fires of varying intensity; some approximate temperatures in standard furnace tests, and most have characteristics of actual building fires. In select tests, the walls are predamaged to simulate fire following an earthquake. The results show a progressive decrease of postfire lateral load capacity with increasing fire intensity for all walls; however, each wall type exhibits varied sensitivity to the fire intensity as well as to predamage. By understanding the response of these structural systems in real fires, designers can better plan for situations in which multiple hazards, including fire, exist.
(Less)
- author
- Hoehler, Matthew S. ; Andres, Blanca LU and Bundy, Matthew F.
- publishing date
- 2020-05-01
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- Cold-formed steel, Earthquake, Fire, Gypsum-sheet steel composite panel, Oriented strand board, Shear wall, Strap bracing
- in
- Journal of Structural Engineering
- volume
- 146
- issue
- 5
- article number
- 04020066
- publisher
- American Society of Civil Engineers (ASCE)
- external identifiers
-
- scopus:85081579967
- ISSN
- 0733-9445
- DOI
- 10.1061/(ASCE)ST.1943-541X.0002610
- language
- English
- LU publication?
- no
- id
- 0aa527bc-52ae-4e2f-ae24-a84eb54e3119
- date added to LUP
- 2020-06-22 15:23:12
- date last changed
- 2025-04-04 15:04:30
@article{0aa527bc-52ae-4e2f-ae24-a84eb54e3119, abstract = {{<p>This paper examines the structural response of cold-formed steel-framed building lateral force-resisting systems under combinations of simulated earthquake and fire loading. Full-scale experiments with gypsum-sheet steel composite panel sheathed walls, oriented strand board sheathed walls, and steel strap braced walls are presented. Twenty-two test specimens are subjected sequentially to combinations of cyclic shear deformation and fires of varying intensity; some approximate temperatures in standard furnace tests, and most have characteristics of actual building fires. In select tests, the walls are predamaged to simulate fire following an earthquake. The results show a progressive decrease of postfire lateral load capacity with increasing fire intensity for all walls; however, each wall type exhibits varied sensitivity to the fire intensity as well as to predamage. By understanding the response of these structural systems in real fires, designers can better plan for situations in which multiple hazards, including fire, exist.</p>}}, author = {{Hoehler, Matthew S. and Andres, Blanca and Bundy, Matthew F.}}, issn = {{0733-9445}}, keywords = {{Cold-formed steel; Earthquake; Fire; Gypsum-sheet steel composite panel; Oriented strand board; Shear wall; Strap bracing}}, language = {{eng}}, month = {{05}}, number = {{5}}, publisher = {{American Society of Civil Engineers (ASCE)}}, series = {{Journal of Structural Engineering}}, title = {{Lateral Resistance Reduction to Cold-Formed Steel-Framed Shear Walls under Various Fire Scenarios}}, url = {{http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0002610}}, doi = {{10.1061/(ASCE)ST.1943-541X.0002610}}, volume = {{146}}, year = {{2020}}, }