Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Simultaneous high-resolution T2-weighted imaging and quantitative T2 mapping at low magnetic field strengths using a multiple TE and multi-orientation acquisition approach

Deoni, Sean C.L. ; O'Muircheartaigh, Jonathan ; Ljungberg, Emil LU orcid ; Huentelman, Mathew and Williams, Steven C.R. (2022) In Magnetic Resonance in Medicine 88(3). p.1273-1281
Abstract

Purpose: Low magnetic field systems provide an important opportunity to expand MRI to new and diverse clinical and research study populations. However, a fundamental limitation of low field strength systems is the reduced SNR compared to 1.5 or 3T, necessitating compromises in spatial resolution and imaging time. Most often, images are acquired with anisotropic voxels with low through-plane resolution, which provide acceptable image quality with reasonable scan times, but can impair visualization of subtle pathology. Methods: Here, we describe a super-resolution approach to reconstruct high-resolution isotropic T2-weighted images from a series of low-resolution anisotropic images acquired in orthogonal orientations.... (More)

Purpose: Low magnetic field systems provide an important opportunity to expand MRI to new and diverse clinical and research study populations. However, a fundamental limitation of low field strength systems is the reduced SNR compared to 1.5 or 3T, necessitating compromises in spatial resolution and imaging time. Most often, images are acquired with anisotropic voxels with low through-plane resolution, which provide acceptable image quality with reasonable scan times, but can impair visualization of subtle pathology. Methods: Here, we describe a super-resolution approach to reconstruct high-resolution isotropic T2-weighted images from a series of low-resolution anisotropic images acquired in orthogonal orientations. Furthermore, acquiring each image with an incremented TE allows calculations of quantitative T2 images without time penalty. Results: Our approach is demonstrated via phantom and in vivo human brain imaging, with simultaneous 1.5 × 1.5 × 1.5 mm3 T2-weighted and quantitative T2 maps acquired using a clinically feasible approach that combines three acquisition that require approximately 4-min each to collect. Calculated T2 values agree with reference multiple TE measures with intraclass correlation values of 0.96 and 0.85 in phantom and in vivo measures, respectively, in line with previously reported brain T2 values at 150 mT, 1.5T, and 3T. Conclusion: Our multi-orientation and multi-TE approach is a time-efficient method for high-resolution T2-weighted images for anatomical visualization with simultaneous quantitative T2 imaging for increased sensitivity to tissue microstructure and chemical composition.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
child brain development, low field MRI, magnetic resonance imaging, pediatric neuroimaging
in
Magnetic Resonance in Medicine
volume
88
issue
3
pages
9 pages
publisher
John Wiley & Sons Inc.
external identifiers
  • pmid:35553454
  • scopus:85129947323
ISSN
0740-3194
DOI
10.1002/mrm.29273
language
English
LU publication?
yes
id
0b38d3d6-717d-4a8d-a0de-044579797b40
date added to LUP
2022-08-23 14:51:51
date last changed
2024-04-18 14:04:18
@article{0b38d3d6-717d-4a8d-a0de-044579797b40,
  abstract     = {{<p>Purpose: Low magnetic field systems provide an important opportunity to expand MRI to new and diverse clinical and research study populations. However, a fundamental limitation of low field strength systems is the reduced SNR compared to 1.5 or 3T, necessitating compromises in spatial resolution and imaging time. Most often, images are acquired with anisotropic voxels with low through-plane resolution, which provide acceptable image quality with reasonable scan times, but can impair visualization of subtle pathology. Methods: Here, we describe a super-resolution approach to reconstruct high-resolution isotropic T<sub>2</sub>-weighted images from a series of low-resolution anisotropic images acquired in orthogonal orientations. Furthermore, acquiring each image with an incremented TE allows calculations of quantitative T<sub>2</sub> images without time penalty. Results: Our approach is demonstrated via phantom and in vivo human brain imaging, with simultaneous 1.5 × 1.5 × 1.5 mm<sup>3</sup> T<sub>2</sub>-weighted and quantitative T<sub>2</sub> maps acquired using a clinically feasible approach that combines three acquisition that require approximately 4-min each to collect. Calculated T<sub>2</sub> values agree with reference multiple TE measures with intraclass correlation values of 0.96 and 0.85 in phantom and in vivo measures, respectively, in line with previously reported brain T<sub>2</sub> values at 150 mT, 1.5T, and 3T. Conclusion: Our multi-orientation and multi-TE approach is a time-efficient method for high-resolution T<sub>2</sub>-weighted images for anatomical visualization with simultaneous quantitative T<sub>2</sub> imaging for increased sensitivity to tissue microstructure and chemical composition.</p>}},
  author       = {{Deoni, Sean C.L. and O'Muircheartaigh, Jonathan and Ljungberg, Emil and Huentelman, Mathew and Williams, Steven C.R.}},
  issn         = {{0740-3194}},
  keywords     = {{child brain development; low field MRI; magnetic resonance imaging; pediatric neuroimaging}},
  language     = {{eng}},
  number       = {{3}},
  pages        = {{1273--1281}},
  publisher    = {{John Wiley & Sons Inc.}},
  series       = {{Magnetic Resonance in Medicine}},
  title        = {{Simultaneous high-resolution T<sub>2</sub>-weighted imaging and quantitative T<sub>2</sub> mapping at low magnetic field strengths using a multiple TE and multi-orientation acquisition approach}},
  url          = {{http://dx.doi.org/10.1002/mrm.29273}},
  doi          = {{10.1002/mrm.29273}},
  volume       = {{88}},
  year         = {{2022}},
}