Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Urban Radio Access Networks

Salous, Sana ; Werthmann, Thomas ; Dahman, Ghassan LU ; Flordelis, Jose LU ; Peter, Michael ; Hur, Sooyoung ; Park, Jeongho Jh. ; Rose, Denis and Navarro, Andrés (2016) In RIVER PUBLISHERS SERIES IN COMMUNICATIONS 47. p.17-70
Abstract
The increase in demand for high-data rates on the move in the complex urban
environment requires either the allocation of new spectrum such as available
contiguous spectrum in the mm-wave band or the use of novel configurations
such as the application of massive multiple-input multiple-output (MIMO)
technology. To enable the design of efficient wireless networks, an understanding
of the propagation phenomena in the diverse urban environments is
fundamental. In this chapter, we present results of studies related to fourth
generation (4G) and future 5G radio systems both outdoor and outdoor-toindoor.
Classifications include rural and highway, BS to pedestrian users,
vehicular-to-vehicular,... (More)
The increase in demand for high-data rates on the move in the complex urban
environment requires either the allocation of new spectrum such as available
contiguous spectrum in the mm-wave band or the use of novel configurations
such as the application of massive multiple-input multiple-output (MIMO)
technology. To enable the design of efficient wireless networks, an understanding
of the propagation phenomena in the diverse urban environments is
fundamental. In this chapter, we present results of studies related to fourth
generation (4G) and future 5G radio systems both outdoor and outdoor-toindoor.
Classifications include rural and highway, BS to pedestrian users,
vehicular-to-vehicular, vehicular-to-infrastructure, container terminals, vegetation,
and high-speed mobility such as trains. Results for path loss (PL)
and shadow fading are presented from various studies of stochastic and
deterministic channel models based in outdoor, indoor-to-outdoor, hotspots,
vehicular, and train environments. Relay stations and the impact of antenna
placement in vehicles, antenna terminal height, and the presence of pedestrians
are discussed. Results of angular spread and rms delay spread of wideband
channels are presented for the frequency bands below 6 GHz allocated for
4G networks, and preliminary results in the mm-wave band, envisaged for
5G networks, including prediction of the impact of rain. To facilitate the
simulation of radio networks in urban environments the Hannover Scenario
is proposed to give a common simulation environment. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; and
organization
publishing date
type
Chapter in Book/Report/Conference proceeding
publication status
published
subject
host publication
Cooperative Radio Communications for Green Smart Environments
series title
RIVER PUBLISHERS SERIES IN COMMUNICATIONS
editor
Cardona, Narcis
volume
47
pages
17 - 70
publisher
River Publishers
external identifiers
  • scopus:85072006378
ISBN
9788793379152
9788793379145
language
English
LU publication?
yes
id
0d450aa8-acbb-41f9-8738-9714b6913635
alternative location
http://www.riverpublishers.com/research_details.php?book_id=318
date added to LUP
2016-08-22 20:08:35
date last changed
2024-07-12 15:03:40
@inbook{0d450aa8-acbb-41f9-8738-9714b6913635,
  abstract     = {{The increase in demand for high-data rates on the move in the complex urban<br/>environment requires either the allocation of new spectrum such as available<br/>contiguous spectrum in the mm-wave band or the use of novel configurations<br/>such as the application of massive multiple-input multiple-output (MIMO)<br/>technology. To enable the design of efficient wireless networks, an understanding<br/>of the propagation phenomena in the diverse urban environments is<br/>fundamental. In this chapter, we present results of studies related to fourth<br/>generation (4G) and future 5G radio systems both outdoor and outdoor-toindoor.<br/>Classifications include rural and highway, BS to pedestrian users,<br/>vehicular-to-vehicular, vehicular-to-infrastructure, container terminals, vegetation,<br/>and high-speed mobility such as trains. Results for path loss (PL)<br/>and shadow fading are presented from various studies of stochastic and<br/>deterministic channel models based in outdoor, indoor-to-outdoor, hotspots,<br/>vehicular, and train environments. Relay stations and the impact of antenna<br/>placement in vehicles, antenna terminal height, and the presence of pedestrians<br/>are discussed. Results of angular spread and rms delay spread of wideband<br/>channels are presented for the frequency bands below 6 GHz allocated for<br/>4G networks, and preliminary results in the mm-wave band, envisaged for<br/>5G networks, including prediction of the impact of rain. To facilitate the<br/>simulation of radio networks in urban environments the Hannover Scenario<br/>is proposed to give a common simulation environment.}},
  author       = {{Salous, Sana and Werthmann, Thomas and Dahman, Ghassan and Flordelis, Jose and Peter, Michael and Hur, Sooyoung and Park, Jeongho Jh. and Rose, Denis and Navarro, Andrés}},
  booktitle    = {{Cooperative Radio Communications for Green Smart Environments}},
  editor       = {{Cardona, Narcis}},
  isbn         = {{9788793379152}},
  language     = {{eng}},
  pages        = {{17--70}},
  publisher    = {{River Publishers}},
  series       = {{RIVER PUBLISHERS SERIES IN COMMUNICATIONS}},
  title        = {{Urban Radio Access Networks}},
  url          = {{http://www.riverpublishers.com/research_details.php?book_id=318}},
  volume       = {{47}},
  year         = {{2016}},
}