Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Interacting phenotypes and the coevolutionary process : Interspecific indirect genetic effects alter coevolutionary dynamics

De Lisle, Stephen P. LU ; Bolnick, Daniel I. ; Brodie, Edmund D. ; Moore, Allen J. and McGlothlin, Joel W. (2022) In Evolution 76(3). p.429-444
Abstract

Coevolution occurs when species interact to influence one another's fitness, resulting in reciprocal evolutionary change. In many coevolving lineages, trait expression in one species is modified by the genotypes and phenotypes of the other, forming feedback loops reminiscent of models of intraspecific social evolution. Here, we adapt the theory of within-species social evolution, characterized by indirect genetic effects and social selection imposed by interacting individuals, to the case of interspecific interactions. In a trait-based model, we derive general expressions for multivariate evolutionary change in two species and the expected between-species covariance in evolutionary change when selection varies across space. We show that... (More)

Coevolution occurs when species interact to influence one another's fitness, resulting in reciprocal evolutionary change. In many coevolving lineages, trait expression in one species is modified by the genotypes and phenotypes of the other, forming feedback loops reminiscent of models of intraspecific social evolution. Here, we adapt the theory of within-species social evolution, characterized by indirect genetic effects and social selection imposed by interacting individuals, to the case of interspecific interactions. In a trait-based model, we derive general expressions for multivariate evolutionary change in two species and the expected between-species covariance in evolutionary change when selection varies across space. We show that reciprocal interspecific indirect genetic effects can dominate the coevolutionary process and drive patterns of correlated evolution beyond what is expected from direct selection alone. In extreme cases, interspecific indirect genetic effects can lead to coevolution when selection does not covary between species or even when one species lacks genetic variance. Moreover, our model indicates that interspecific indirect genetic effects may interact in complex ways with cross-species selection to determine the course of coevolution. Importantly, our model makes empirically testable predictions for how different forms of reciprocal interactions contribute to the coevolutionary process.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; and
publishing date
type
Contribution to journal
publication status
published
keywords
Coevolution, cross-species selection, interspecific indirect genetic effects, quantitative genetics, species interactions
in
Evolution
volume
76
issue
3
pages
16 pages
publisher
Wiley-Blackwell
external identifiers
  • scopus:85124531217
  • pmid:34997942
ISSN
0014-3820
DOI
10.1111/evo.14427
language
English
LU publication?
no
additional info
Funding Information: Funding was provided by grants from the Royal Swedish Academy of Sciences and Swedish Research Council to SD (VR registration number 2019‐03706), the University of Connecticut and the NIAID (1R01AI123659‐01A1) to DB, and the National Science Foundation (DEB 1457463) to JM. We thank M. Frederickson for discussion and pointing us to some relevant references. Publisher Copyright: © 2021 The Authors. Evolution published by Wiley Periodicals LLC on behalf of The Society for the Study of Evolution.
id
0dde71d1-aa1a-49ce-9a22-f65ca3413e09
date added to LUP
2022-12-30 11:41:38
date last changed
2024-04-14 23:45:13
@article{0dde71d1-aa1a-49ce-9a22-f65ca3413e09,
  abstract     = {{<p>Coevolution occurs when species interact to influence one another's fitness, resulting in reciprocal evolutionary change. In many coevolving lineages, trait expression in one species is modified by the genotypes and phenotypes of the other, forming feedback loops reminiscent of models of intraspecific social evolution. Here, we adapt the theory of within-species social evolution, characterized by indirect genetic effects and social selection imposed by interacting individuals, to the case of interspecific interactions. In a trait-based model, we derive general expressions for multivariate evolutionary change in two species and the expected between-species covariance in evolutionary change when selection varies across space. We show that reciprocal interspecific indirect genetic effects can dominate the coevolutionary process and drive patterns of correlated evolution beyond what is expected from direct selection alone. In extreme cases, interspecific indirect genetic effects can lead to coevolution when selection does not covary between species or even when one species lacks genetic variance. Moreover, our model indicates that interspecific indirect genetic effects may interact in complex ways with cross-species selection to determine the course of coevolution. Importantly, our model makes empirically testable predictions for how different forms of reciprocal interactions contribute to the coevolutionary process.</p>}},
  author       = {{De Lisle, Stephen P. and Bolnick, Daniel I. and Brodie, Edmund D. and Moore, Allen J. and McGlothlin, Joel W.}},
  issn         = {{0014-3820}},
  keywords     = {{Coevolution; cross-species selection; interspecific indirect genetic effects; quantitative genetics; species interactions}},
  language     = {{eng}},
  number       = {{3}},
  pages        = {{429--444}},
  publisher    = {{Wiley-Blackwell}},
  series       = {{Evolution}},
  title        = {{Interacting phenotypes and the coevolutionary process : Interspecific indirect genetic effects alter coevolutionary dynamics}},
  url          = {{http://dx.doi.org/10.1111/evo.14427}},
  doi          = {{10.1111/evo.14427}},
  volume       = {{76}},
  year         = {{2022}},
}