Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Fungi rather than bacteria drive early mass loss from fungal necromass regardless of particle size

Pérez-Pazos, Eduardo ; Beidler, Katilyn V. ; Narayanan, Achala ; Beatty, Briana H. ; Maillard, François LU ; Bancos, Alexandra ; Heckman, Katherine A. and Kennedy, Peter G. (2024) In Environmental microbiology reports 16(3).
Abstract

Microbial necromass is increasingly recognized as an important fast-cycling component of the long-term carbon present in soils. To better understand how fungi and bacteria individually contribute to the decomposition of fungal necromass, three particle sizes (>500, 250–500, and <250 μm) of Hyaloscypha bicolor necromass were incubated in laboratory microcosms inoculated with individual strains of two fungi and two bacteria. Decomposition was assessed after 15 and 28 days via necromass loss, microbial respiration, and changes in necromass pH, water content, and chemistry. To examine how fungal–bacterial interactions impact microbial growth on necromass, single and paired cultures of bacteria and fungi were grown in microplates... (More)

Microbial necromass is increasingly recognized as an important fast-cycling component of the long-term carbon present in soils. To better understand how fungi and bacteria individually contribute to the decomposition of fungal necromass, three particle sizes (>500, 250–500, and <250 μm) of Hyaloscypha bicolor necromass were incubated in laboratory microcosms inoculated with individual strains of two fungi and two bacteria. Decomposition was assessed after 15 and 28 days via necromass loss, microbial respiration, and changes in necromass pH, water content, and chemistry. To examine how fungal–bacterial interactions impact microbial growth on necromass, single and paired cultures of bacteria and fungi were grown in microplates containing necromass-infused media. Microbial growth was measured after 5 days through quantitative PCR. Regardless of particle size, necromass colonized by fungi had higher mass loss and respiration than both bacteria and uninoculated controls. Fungal colonization increased necromass pH, water content, and altered chemistry, while necromass colonized by bacteria remained mostly unaltered. Bacteria grew significantly more when co-cultured with a fungus, while fungal growth was not significantly affected by bacteria. Collectively, our results suggest that fungi act as key early decomposers of fungal necromass and that bacteria may require the presence of fungi to actively participate in necromass decomposition.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Environmental microbiology reports
volume
16
issue
3
article number
e13280
publisher
Wiley-Blackwell
external identifiers
  • pmid:38922748
  • scopus:85196731534
ISSN
1758-2229
DOI
10.1111/1758-2229.13280
language
English
LU publication?
yes
additional info
Publisher Copyright: © 2024 The Author(s). Environmental Microbiology Reports published by John Wiley & Sons Ltd.
id
0e00baa7-e49b-4a32-bc95-3c9dfb5af995
date added to LUP
2024-07-31 21:06:25
date last changed
2024-08-14 21:36:15
@article{0e00baa7-e49b-4a32-bc95-3c9dfb5af995,
  abstract     = {{<p>Microbial necromass is increasingly recognized as an important fast-cycling component of the long-term carbon present in soils. To better understand how fungi and bacteria individually contribute to the decomposition of fungal necromass, three particle sizes (&gt;500, 250–500, and &lt;250 μm) of Hyaloscypha bicolor necromass were incubated in laboratory microcosms inoculated with individual strains of two fungi and two bacteria. Decomposition was assessed after 15 and 28 days via necromass loss, microbial respiration, and changes in necromass pH, water content, and chemistry. To examine how fungal–bacterial interactions impact microbial growth on necromass, single and paired cultures of bacteria and fungi were grown in microplates containing necromass-infused media. Microbial growth was measured after 5 days through quantitative PCR. Regardless of particle size, necromass colonized by fungi had higher mass loss and respiration than both bacteria and uninoculated controls. Fungal colonization increased necromass pH, water content, and altered chemistry, while necromass colonized by bacteria remained mostly unaltered. Bacteria grew significantly more when co-cultured with a fungus, while fungal growth was not significantly affected by bacteria. Collectively, our results suggest that fungi act as key early decomposers of fungal necromass and that bacteria may require the presence of fungi to actively participate in necromass decomposition.</p>}},
  author       = {{Pérez-Pazos, Eduardo and Beidler, Katilyn V. and Narayanan, Achala and Beatty, Briana H. and Maillard, François and Bancos, Alexandra and Heckman, Katherine A. and Kennedy, Peter G.}},
  issn         = {{1758-2229}},
  language     = {{eng}},
  number       = {{3}},
  publisher    = {{Wiley-Blackwell}},
  series       = {{Environmental microbiology reports}},
  title        = {{Fungi rather than bacteria drive early mass loss from fungal necromass regardless of particle size}},
  url          = {{http://dx.doi.org/10.1111/1758-2229.13280}},
  doi          = {{10.1111/1758-2229.13280}},
  volume       = {{16}},
  year         = {{2024}},
}