Advanced

Combining spectral induced polarization with x-ray tomography to investigate the importance of DNAPL geometry in sand samples

Johansson, Sara LU ; Rossi, Matteo LU ; Hall, Stephen LU ; Sparrenbom, Charlotte J. LU ; Hagerberg, David LU ; Tudisco, Erika LU ; Rosqvist, Håkan LU and Dahlin, Torleif LU (2019) In Geophysics
Abstract
Whilst many studies have been performed to investigate the spectral induced polarization (SIP) response of Non-aqueous Phase Liquid (NAPL) contaminated soil samples there are still many uncertainties in the interpretation of the data. A key issue is that altered pore space geometries due to the presence of a NAPL phase will change the measured IP spectra. However, without any information on the NAPL distribution in the pore space, assumptions are necessary for the SIP data interpretation. Therefore, experimental data of SIP signals directly associated with different NAPL distributions is needed. We use high-resolution x-ray tomography and 3D image processing to quantitatively assess NAPL distributions in samples of fine-grained sand... (More)
Whilst many studies have been performed to investigate the spectral induced polarization (SIP) response of Non-aqueous Phase Liquid (NAPL) contaminated soil samples there are still many uncertainties in the interpretation of the data. A key issue is that altered pore space geometries due to the presence of a NAPL phase will change the measured IP spectra. However, without any information on the NAPL distribution in the pore space, assumptions are necessary for the SIP data interpretation. Therefore, experimental data of SIP signals directly associated with different NAPL distributions is needed. We use high-resolution x-ray tomography and 3D image processing to quantitatively assess NAPL distributions in samples of fine-grained sand containing different concentrations of tetrachloroethylene (PCE) and link this to SIP measurements on the same samples. The total concentration of the sample constituents as well as the volumes of the individual NAPL blobs were calculated and used for the interpretation of the associated SIP responses. The x-ray tomography and image analysis showed that the real sample properties (porosity and NAPL distributions) differed from the targeted ones. Both contaminated samples contained less NAPL than expected from the manual sample preparation. The SIP results showed higher real conductivity and lower imaginary conductivity in the contaminated samples compared to a clean sample. This is interpreted as an effect of increased surface conductivity along interconnected NAPL blobs and decreased surface areas in the samples due to NAPL blobs larger than and enclosing grains. We conclude that the combination of SIP, x-ray tomography and image analysis is a very promising approach to achieve a better understanding of the measured SIP responses of NAPL contaminated samples.

(Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
in press
subject
in
Geophysics
publisher
Soc Exploration Geophysicists
ISSN
0016-8033
DOI
10.1190/geo2018-0108.1
language
English
LU publication?
yes
id
0eacb841-1abb-4ee8-be9e-ee413bda7b56
date added to LUP
2019-03-05 09:39:21
date last changed
2019-03-08 14:17:25
@article{0eacb841-1abb-4ee8-be9e-ee413bda7b56,
  abstract     = {Whilst many studies have been performed to investigate the spectral induced polarization (SIP) response of Non-aqueous Phase Liquid (NAPL) contaminated soil samples there are still many uncertainties in the interpretation of the data. A key issue is that altered pore space geometries due to the presence of a NAPL phase will change the measured IP spectra. However, without any information on the NAPL distribution in the pore space, assumptions are necessary for the SIP data interpretation. Therefore, experimental data of SIP signals directly associated with different NAPL distributions is needed. We use high-resolution x-ray tomography and 3D image processing to quantitatively assess NAPL distributions in samples of fine-grained sand containing different concentrations of tetrachloroethylene (PCE) and link this to SIP measurements on the same samples. The total concentration of the sample constituents as well as the volumes of the individual NAPL blobs were calculated and used for the interpretation of the associated SIP responses. The x-ray tomography and image analysis showed that the real sample properties (porosity and NAPL distributions) differed from the targeted ones. Both contaminated samples contained less NAPL than expected from the manual sample preparation. The SIP results showed higher real conductivity and lower imaginary conductivity in the contaminated samples compared to a clean sample. This is interpreted as an effect of increased surface conductivity along interconnected NAPL blobs and decreased surface areas in the samples due to NAPL blobs larger than and enclosing grains. We conclude that the combination of SIP, x-ray tomography and image analysis is a very promising approach to achieve a better understanding of the measured SIP responses of NAPL contaminated samples.<br/><br/>},
  author       = {Johansson, Sara and Rossi, Matteo and Hall, Stephen and Sparrenbom, Charlotte J. and Hagerberg, David and Tudisco, Erika and Rosqvist, Håkan and Dahlin, Torleif},
  issn         = {0016-8033},
  language     = {eng},
  month        = {02},
  publisher    = {Soc Exploration Geophysicists},
  series       = {Geophysics},
  title        = {Combining spectral induced polarization with x-ray tomography to investigate the importance of DNAPL geometry in sand samples},
  url          = {http://dx.doi.org/10.1190/geo2018-0108.1},
  year         = {2019},
}