Receptor binding properties of amperozide
(1990) In Pharmacology and Toxicology 66(Suppl. 1). p.8-11- Abstract
- The receptor pharmacology of amperozide was investigated with in vitro radioligand binding technique. Amperozide possessed a high affinity to the 5-HT2 receptors (Ki = 16.5 +/- 2.1 nM) and a moderate affinity to alpha 1-adrenergic receptors of rat cerebral cortical membranes (Ki = 172 +/- 14 nM). The affinity of amperozide for striatal and limbic dopamine D2 receptors was low and not significantly different (Ki +/- S.E.M. = 540 +/- 59 nM vs 403 +/- 42 nM; p less than 0.11, n = 4). The affinity for striatal and limbic 5-HT2 receptors was measured as well and found to be very close to the affinity to the cerebral cortical 5-HT2 receptor. The drug affinity for D2 and 5-HT2 receptors seems thus not to be influenced by the location of the... (More)
- The receptor pharmacology of amperozide was investigated with in vitro radioligand binding technique. Amperozide possessed a high affinity to the 5-HT2 receptors (Ki = 16.5 +/- 2.1 nM) and a moderate affinity to alpha 1-adrenergic receptors of rat cerebral cortical membranes (Ki = 172 +/- 14 nM). The affinity of amperozide for striatal and limbic dopamine D2 receptors was low and not significantly different (Ki +/- S.E.M. = 540 +/- 59 nM vs 403 +/- 42 nM; p less than 0.11, n = 4). The affinity for striatal and limbic 5-HT2 receptors was measured as well and found to be very close to the affinity to the cerebral cortical 5-HT2 receptor. The drug affinity for D2 and 5-HT2 receptors seems thus not to be influenced by the location of the receptor moiety. The affinity for several other rat brain receptors such as 5-HT1A, alpha 2-adrenergic, dopamine D1, muscarinic M1 and M2, opiate sigma and beta 2-adrenergic was low. The pseudo-Hill coefficient of the amperozide competition binding curve was consistently higher than one indicating antagonistic and complex interactions with the 5-HT2 receptor or with alpha 1-adrenergic and dopamine D2 receptors. The antagonistic properties of amperozide were investigated by its ability to antagonize the serotonin-induced formation of inositol-1-phosphate in human blood platelets. Amperozide inhibited this 5-HT2 receptor-mediated intracellular response with similar potency as ketanserin. These results suggest that amperozide is a selective 5-HT2 receptor antagonist. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/1105419
- author
- Svartengren, J and Simonsson, Per LU
- organization
- publishing date
- 1990
- type
- Contribution to journal
- publication status
- published
- subject
- in
- Pharmacology and Toxicology
- volume
- 66
- issue
- Suppl. 1
- pages
- 8 - 11
- publisher
- Wiley-Blackwell
- external identifiers
-
- pmid:2154737
- scopus:0025262145
- ISSN
- 1600-0773
- language
- English
- LU publication?
- yes
- id
- 3c7bba05-58ea-4962-9c3a-112b5560d465 (old id 1105419)
- date added to LUP
- 2016-04-01 12:07:50
- date last changed
- 2021-01-03 07:57:40
@article{3c7bba05-58ea-4962-9c3a-112b5560d465, abstract = {{The receptor pharmacology of amperozide was investigated with in vitro radioligand binding technique. Amperozide possessed a high affinity to the 5-HT2 receptors (Ki = 16.5 +/- 2.1 nM) and a moderate affinity to alpha 1-adrenergic receptors of rat cerebral cortical membranes (Ki = 172 +/- 14 nM). The affinity of amperozide for striatal and limbic dopamine D2 receptors was low and not significantly different (Ki +/- S.E.M. = 540 +/- 59 nM vs 403 +/- 42 nM; p less than 0.11, n = 4). The affinity for striatal and limbic 5-HT2 receptors was measured as well and found to be very close to the affinity to the cerebral cortical 5-HT2 receptor. The drug affinity for D2 and 5-HT2 receptors seems thus not to be influenced by the location of the receptor moiety. The affinity for several other rat brain receptors such as 5-HT1A, alpha 2-adrenergic, dopamine D1, muscarinic M1 and M2, opiate sigma and beta 2-adrenergic was low. The pseudo-Hill coefficient of the amperozide competition binding curve was consistently higher than one indicating antagonistic and complex interactions with the 5-HT2 receptor or with alpha 1-adrenergic and dopamine D2 receptors. The antagonistic properties of amperozide were investigated by its ability to antagonize the serotonin-induced formation of inositol-1-phosphate in human blood platelets. Amperozide inhibited this 5-HT2 receptor-mediated intracellular response with similar potency as ketanserin. These results suggest that amperozide is a selective 5-HT2 receptor antagonist.}}, author = {{Svartengren, J and Simonsson, Per}}, issn = {{1600-0773}}, language = {{eng}}, number = {{Suppl. 1}}, pages = {{8--11}}, publisher = {{Wiley-Blackwell}}, series = {{Pharmacology and Toxicology}}, title = {{Receptor binding properties of amperozide}}, volume = {{66}}, year = {{1990}}, }