Advanced

Tolbutamide stimulates exocytosis of glucagon by inhibition of a mitochondrial-like ATP-sensitive K+ (KATP) conductance in rat pancreatic A-cells

Hoy, M; Olsen, H L; Bokvist, K; Buschard, K; Barg, Sebastian LU ; Rorsman, Patrik LU and Gromada, J (2000) In Journal of Physiology 527(1). p.109-120
Abstract
1. Capacitance measurements were used to examine the effects of the sulphonylurea tolbutamide on Ca2+-dependent exocytosis in isolated glucagon-secreting rat pancreatic A-cells. 2. When applied extracellularly, tolbutamide stimulated depolarization-evoked exocytosis 4.2-fold without affecting the whole-cell Ca2+ current. The concentration dependence of the stimulatory action was determined by intracellular application through the recording pipette. Tolbutamide produced a concentration-dependent increase in cell capacitance. Half-maximal stimulation was observed at 33 microM and the maximum stimulation corresponded to a 3.4-fold enhancement of exocytosis. 3. The stimulatory action of tolbutamide was dependent on protein kinase C activity.... (More)
1. Capacitance measurements were used to examine the effects of the sulphonylurea tolbutamide on Ca2+-dependent exocytosis in isolated glucagon-secreting rat pancreatic A-cells. 2. When applied extracellularly, tolbutamide stimulated depolarization-evoked exocytosis 4.2-fold without affecting the whole-cell Ca2+ current. The concentration dependence of the stimulatory action was determined by intracellular application through the recording pipette. Tolbutamide produced a concentration-dependent increase in cell capacitance. Half-maximal stimulation was observed at 33 microM and the maximum stimulation corresponded to a 3.4-fold enhancement of exocytosis. 3. The stimulatory action of tolbutamide was dependent on protein kinase C activity. The action of tolbutamide was mimicked by the general K+ channel blockers TEA (10 mM) and quinine (10 microM). A similar stimulation was elicited by 5-hydroxydecanoate (5-HD; 10 microM), an inhibitor of mitochondrial ATP-sensitive K+ (KATP) channels. 4. Tolbutamide-stimulated, but not TEA-induced, exocytosis was antagonized by the K+ channel openers diazoxide, pinacidil and cromakalim. 5. Dissipating the transgranular K+ gradient with nigericin and valinomycin inhibited tolbutamide- and Ca2+-evoked exocytosis. Furthermore, tolbutamide- and Ca2+-induced exocytosis were abolished by the H+ ionophore FCCP or by arresting the vacuolar (V-type) H+-ATPase with bafilomycin A1 or DCCD. Finally, ammonium chloride stimulated exocytosis to a similar extent to that obtained with tolbutamide. 6. We propose that during granular maturation, a granular V-type H+-ATPase pumps H+ into the secretory granule leading to the generation of a pH gradient across the granular membrane and the development of a positive voltage inside the granules. The pumping of H+ is facilitated by the concomitant exit of K+ through granular K+ channels with pharmacological properties similar to those of mitochondrial KATP channels. Release of granules that have been primed is then facilitated by the addition of K+ channel blockers. The resulting increase in membrane potential promotes exocytosis by unknown mechanisms, possibly involving granular alkalinization. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Physiology
volume
527
issue
1
pages
109 - 120
publisher
The Physiological Society
external identifiers
  • pmid:10944174
  • scopus:0033837052
ISSN
1469-7793
language
English
LU publication?
yes
id
8d3a013d-b163-4d8e-812e-a880c28dcb5e (old id 1117046)
alternative location
http://jp.physoc.org/cgi/content/full/527/1/109
date added to LUP
2008-07-02 15:42:37
date last changed
2017-01-01 06:45:35
@article{8d3a013d-b163-4d8e-812e-a880c28dcb5e,
  abstract     = {1. Capacitance measurements were used to examine the effects of the sulphonylurea tolbutamide on Ca2+-dependent exocytosis in isolated glucagon-secreting rat pancreatic A-cells. 2. When applied extracellularly, tolbutamide stimulated depolarization-evoked exocytosis 4.2-fold without affecting the whole-cell Ca2+ current. The concentration dependence of the stimulatory action was determined by intracellular application through the recording pipette. Tolbutamide produced a concentration-dependent increase in cell capacitance. Half-maximal stimulation was observed at 33 microM and the maximum stimulation corresponded to a 3.4-fold enhancement of exocytosis. 3. The stimulatory action of tolbutamide was dependent on protein kinase C activity. The action of tolbutamide was mimicked by the general K+ channel blockers TEA (10 mM) and quinine (10 microM). A similar stimulation was elicited by 5-hydroxydecanoate (5-HD; 10 microM), an inhibitor of mitochondrial ATP-sensitive K+ (KATP) channels. 4. Tolbutamide-stimulated, but not TEA-induced, exocytosis was antagonized by the K+ channel openers diazoxide, pinacidil and cromakalim. 5. Dissipating the transgranular K+ gradient with nigericin and valinomycin inhibited tolbutamide- and Ca2+-evoked exocytosis. Furthermore, tolbutamide- and Ca2+-induced exocytosis were abolished by the H+ ionophore FCCP or by arresting the vacuolar (V-type) H+-ATPase with bafilomycin A1 or DCCD. Finally, ammonium chloride stimulated exocytosis to a similar extent to that obtained with tolbutamide. 6. We propose that during granular maturation, a granular V-type H+-ATPase pumps H+ into the secretory granule leading to the generation of a pH gradient across the granular membrane and the development of a positive voltage inside the granules. The pumping of H+ is facilitated by the concomitant exit of K+ through granular K+ channels with pharmacological properties similar to those of mitochondrial KATP channels. Release of granules that have been primed is then facilitated by the addition of K+ channel blockers. The resulting increase in membrane potential promotes exocytosis by unknown mechanisms, possibly involving granular alkalinization.},
  author       = {Hoy, M and Olsen, H L and Bokvist, K and Buschard, K and Barg, Sebastian and Rorsman, Patrik and Gromada, J},
  issn         = {1469-7793},
  language     = {eng},
  number       = {1},
  pages        = {109--120},
  publisher    = {The Physiological Society},
  series       = {Journal of Physiology},
  title        = {Tolbutamide stimulates exocytosis of glucagon by inhibition of a mitochondrial-like ATP-sensitive K+ (KATP) conductance in rat pancreatic A-cells},
  volume       = {527},
  year         = {2000},
}