Sensing extracellular matrix: an update on discoidin domain receptor function
(2006) In Cellular Signalling 18(8). p.1108-1116- Abstract
- Discoidin Domain Receptors (DDRs) have recently emerged as non-integrin-type receptors for collagen. The two mammalian gene products Discoidin Domain Receptor 1 and -2 constitute a subfamily of tyrosine kinase receptors that are selectively expressed in a number of different cell types and organs. Upon collagen activation, DDRs regulate cell adhesion, proliferation and extracellular matrix remodeling. Here we review the various signaling pathways and cellular responses evoked by activated DDRs. Additionally, we give an overview of the more recent advances in understanding the role of DDRs in various human diseases, in particular during tumor progression, atherosclerosis, inflammation and tissue fibrosis. Furthermore, we discuss potential... (More)
- Discoidin Domain Receptors (DDRs) have recently emerged as non-integrin-type receptors for collagen. The two mammalian gene products Discoidin Domain Receptor 1 and -2 constitute a subfamily of tyrosine kinase receptors that are selectively expressed in a number of different cell types and organs. Upon collagen activation, DDRs regulate cell adhesion, proliferation and extracellular matrix remodeling. Here we review the various signaling pathways and cellular responses evoked by activated DDRs. Additionally, we give an overview of the more recent advances in understanding the role of DDRs in various human diseases, in particular during tumor progression, atherosclerosis, inflammation and tissue fibrosis. Furthermore, we discuss potential roles of genes homologous to mammalian DDRs identified in flies, worms and sponges. We show that the structural organization of these DDR-related genes is highly conserved throughout evolution suggesting that invertebrate DDRs may also function as receptors for collagen. By highlighting current questions about these unusual collagen receptors, we hope to attract new research on DDRs from a variety of different fields. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/1136312
- author
- Vogel, Wolfgang F ; Abdulhussein, Rahim and Ford, Caroline LU
- organization
- publishing date
- 2006
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- Extracellular matrix, Collagen, Tyrosine kinase, Discoidin domain, Receptor signaling, Molecular evolution
- in
- Cellular Signalling
- volume
- 18
- issue
- 8
- pages
- 1108 - 1116
- publisher
- Elsevier
- external identifiers
-
- pmid:16626936
- scopus:33646341752
- ISSN
- 1873-3913
- DOI
- 10.1016/j.cellsig.2006.02.012
- language
- English
- LU publication?
- yes
- id
- 679afc0b-9ae0-4fed-86c0-cbb65fabd9b1 (old id 1136312)
- date added to LUP
- 2016-04-01 12:04:29
- date last changed
- 2022-04-05 17:11:40
@article{679afc0b-9ae0-4fed-86c0-cbb65fabd9b1, abstract = {{Discoidin Domain Receptors (DDRs) have recently emerged as non-integrin-type receptors for collagen. The two mammalian gene products Discoidin Domain Receptor 1 and -2 constitute a subfamily of tyrosine kinase receptors that are selectively expressed in a number of different cell types and organs. Upon collagen activation, DDRs regulate cell adhesion, proliferation and extracellular matrix remodeling. Here we review the various signaling pathways and cellular responses evoked by activated DDRs. Additionally, we give an overview of the more recent advances in understanding the role of DDRs in various human diseases, in particular during tumor progression, atherosclerosis, inflammation and tissue fibrosis. Furthermore, we discuss potential roles of genes homologous to mammalian DDRs identified in flies, worms and sponges. We show that the structural organization of these DDR-related genes is highly conserved throughout evolution suggesting that invertebrate DDRs may also function as receptors for collagen. By highlighting current questions about these unusual collagen receptors, we hope to attract new research on DDRs from a variety of different fields.}}, author = {{Vogel, Wolfgang F and Abdulhussein, Rahim and Ford, Caroline}}, issn = {{1873-3913}}, keywords = {{Extracellular matrix; Collagen; Tyrosine kinase; Discoidin domain; Receptor signaling; Molecular evolution}}, language = {{eng}}, number = {{8}}, pages = {{1108--1116}}, publisher = {{Elsevier}}, series = {{Cellular Signalling}}, title = {{Sensing extracellular matrix: an update on discoidin domain receptor function}}, url = {{http://dx.doi.org/10.1016/j.cellsig.2006.02.012}}, doi = {{10.1016/j.cellsig.2006.02.012}}, volume = {{18}}, year = {{2006}}, }