Characterisation of receptors for IGF-I and insulin; evidence for hybrid insulin/IGF-I receptor in human coronary artery endothelial cells
(2006) In Growth Hormone & Igf Research 16(4). p.258-266- Abstract
- OBJECTIVE: Coronary artery disease is a prevalent cause of morbidity and mortality in diabetes. Little is known about insulin-like growth factor-I receptors (IGF-IR) and insulin receptors (IR) in human coronary endothelium. Our aim was to characterize IGF-IR and IR in human coronary artery endothelial cells (HCAEC). DESIGN: Cultured human coronary artery endothelial cells were used. Gene expression was measured by quantitative real-time RT-PCR analysis and receptor affinity by ligand binding. Receptor protein, phosphorylation of IGF-IR and IR beta-subunit as well as the presence of hybrid insulin receptor/Insulin-like growth factor-I receptor (Hybrid IR/IGF-IR) was analyzed by immunoprecipitation and Western blot. Postreceptor effects of... (More)
- OBJECTIVE: Coronary artery disease is a prevalent cause of morbidity and mortality in diabetes. Little is known about insulin-like growth factor-I receptors (IGF-IR) and insulin receptors (IR) in human coronary endothelium. Our aim was to characterize IGF-IR and IR in human coronary artery endothelial cells (HCAEC). DESIGN: Cultured human coronary artery endothelial cells were used. Gene expression was measured by quantitative real-time RT-PCR analysis and receptor affinity by ligand binding. Receptor protein, phosphorylation of IGF-IR and IR beta-subunit as well as the presence of hybrid insulin receptor/Insulin-like growth factor-I receptor (Hybrid IR/IGF-IR) was analyzed by immunoprecipitation and Western blot. Postreceptor effects of insulin and IGF-I were assed by (3)H-thymidine incorporation. RESULTS: The gene expression of IGF-IR was several folds higher than that of IR. and insulin receptor isoform A (IR-A) was 20-fold more expressed than insulin receptor isoform B (IR-B) in HCAEC. The specific binding of (125)I-IGF-I was higher than that of (125)I-insulin. Insulin and the new long acting insulin analog, glargine, interacted with the IGF-IR with over thousand and 100-fold less potency than IGF-I itself, whereas IGF-II had 6 times lower potency than IGF-I. Phosphorylation of the IGF-IR beta-subunit was obtained by concentrations of 10(-10)-10(-8)M IGF-I, 10(-6)M of insulin, inconsistently by 10(-8)M insulin and not at all by 10(-10)-10(-9)M insulin. The IR beta-subunit was phosphorylated by insulin and IGF-I at concentrations of 10(-9)-10(-8)M. When immunoprecipitating with specific monoclonal anti-IR or anti-IGF-IR alpha-subunit antibodies we found bands situated in slightly different positions suggesting the presence of Hybrid IR/IGF-IR. IGF-I, IGF-II and insulin (10(-9)-10(-7)M) had no significant effect on (3)H-thymidine incorporation into DNA. CONCLUSIONS: Human coronary endothelial cells express more IGF-IR than IR, mainly IR-A, and also Hybrid IR/IGF-IR. Both IGF-I and insulin phosphorylate their receptors, but only IGF-I seems to phosphorylate Hybrid IR/IGF-IR. Our study provides experimental evidence for a possible role of IGF-IR, IR and Hybrid IR/IGF-IR in human coronary artery endothelial cells. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/1137365
- author
- Chisalita, Simona I ; Dekker Nitert, Marloes LU and Arnqvist, Hans J
- organization
- publishing date
- 2006
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- Human endothelial cells, Insulin-like growth factor-I, Insulin
- in
- Growth Hormone & Igf Research
- volume
- 16
- issue
- 4
- pages
- 258 - 266
- publisher
- Elsevier
- external identifiers
-
- pmid:16914341
- scopus:33748169659
- pmid:16914341
- ISSN
- 1532-2238
- DOI
- 10.1016/j.ghir.2006.06.003
- language
- English
- LU publication?
- yes
- additional info
- The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Molecular Metabolism (013212001)
- id
- 7fdd0868-56e2-421f-b062-235a9f202635 (old id 1137365)
- date added to LUP
- 2016-04-01 11:58:03
- date last changed
- 2022-01-26 20:54:58
@article{7fdd0868-56e2-421f-b062-235a9f202635, abstract = {{OBJECTIVE: Coronary artery disease is a prevalent cause of morbidity and mortality in diabetes. Little is known about insulin-like growth factor-I receptors (IGF-IR) and insulin receptors (IR) in human coronary endothelium. Our aim was to characterize IGF-IR and IR in human coronary artery endothelial cells (HCAEC). DESIGN: Cultured human coronary artery endothelial cells were used. Gene expression was measured by quantitative real-time RT-PCR analysis and receptor affinity by ligand binding. Receptor protein, phosphorylation of IGF-IR and IR beta-subunit as well as the presence of hybrid insulin receptor/Insulin-like growth factor-I receptor (Hybrid IR/IGF-IR) was analyzed by immunoprecipitation and Western blot. Postreceptor effects of insulin and IGF-I were assed by (3)H-thymidine incorporation. RESULTS: The gene expression of IGF-IR was several folds higher than that of IR. and insulin receptor isoform A (IR-A) was 20-fold more expressed than insulin receptor isoform B (IR-B) in HCAEC. The specific binding of (125)I-IGF-I was higher than that of (125)I-insulin. Insulin and the new long acting insulin analog, glargine, interacted with the IGF-IR with over thousand and 100-fold less potency than IGF-I itself, whereas IGF-II had 6 times lower potency than IGF-I. Phosphorylation of the IGF-IR beta-subunit was obtained by concentrations of 10(-10)-10(-8)M IGF-I, 10(-6)M of insulin, inconsistently by 10(-8)M insulin and not at all by 10(-10)-10(-9)M insulin. The IR beta-subunit was phosphorylated by insulin and IGF-I at concentrations of 10(-9)-10(-8)M. When immunoprecipitating with specific monoclonal anti-IR or anti-IGF-IR alpha-subunit antibodies we found bands situated in slightly different positions suggesting the presence of Hybrid IR/IGF-IR. IGF-I, IGF-II and insulin (10(-9)-10(-7)M) had no significant effect on (3)H-thymidine incorporation into DNA. CONCLUSIONS: Human coronary endothelial cells express more IGF-IR than IR, mainly IR-A, and also Hybrid IR/IGF-IR. Both IGF-I and insulin phosphorylate their receptors, but only IGF-I seems to phosphorylate Hybrid IR/IGF-IR. Our study provides experimental evidence for a possible role of IGF-IR, IR and Hybrid IR/IGF-IR in human coronary artery endothelial cells.}}, author = {{Chisalita, Simona I and Dekker Nitert, Marloes and Arnqvist, Hans J}}, issn = {{1532-2238}}, keywords = {{Human endothelial cells; Insulin-like growth factor-I; Insulin}}, language = {{eng}}, number = {{4}}, pages = {{258--266}}, publisher = {{Elsevier}}, series = {{Growth Hormone & Igf Research}}, title = {{Characterisation of receptors for IGF-I and insulin; evidence for hybrid insulin/IGF-I receptor in human coronary artery endothelial cells}}, url = {{http://dx.doi.org/10.1016/j.ghir.2006.06.003}}, doi = {{10.1016/j.ghir.2006.06.003}}, volume = {{16}}, year = {{2006}}, }