Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Three-dimensional fluid-structure interaction numerical simulation of new type vortex generators in smooth wavy fin-and-elliptical tube heat exchanger

Lotfi, Babak ; Sundén, Bengt LU and Wang, Qiuwang (2015) 6th International Symposium on Advances in Computational Heat Transfer , CHT 2015 In International Symposium on Advances in Computational Heat Transfer p.356-367
Abstract

A three-dimensional numerical fluid-structure interaction (FSI) framework is successfully carried out on mechanical behaviour of new vortex generators (VGs) – rectangular trapezoidal winglet (RTW), angle rectangular winglet (ARW), curved angle rectangular winglet (CARW) – in smooth wavy fin-and-elliptical tube (SWFET) heat exchanger using the ANSYS MFX Multi-field® solver. The purpose of the present study is to provide better understanding of the performance of the vortex generator structures in SWFET heat exchangers associated with the alloy material properties and geometric factors, because change in the flow geometry due to deformation of components affects the flow field and the pressure drop or pumping power in finned... (More)

A three-dimensional numerical fluid-structure interaction (FSI) framework is successfully carried out on mechanical behaviour of new vortex generators (VGs) – rectangular trapezoidal winglet (RTW), angle rectangular winglet (ARW), curved angle rectangular winglet (CARW) – in smooth wavy fin-and-elliptical tube (SWFET) heat exchanger using the ANSYS MFX Multi-field® solver. The purpose of the present study is to provide better understanding of the performance of the vortex generator structures in SWFET heat exchangers associated with the alloy material properties and geometric factors, because change in the flow geometry due to deformation of components affects the flow field and the pressure drop or pumping power in finned tube heat exchangers. The Reynolds-averaged Navier-Stokes (RANS) equations with Shear Stress Transport (SST) k − ω turbulence model are applied for modelling of the turbulent flow in SWFET heat exchanger and the linear elastic Cauchy-Navier model is solved for the structural von Mises stress and elastic strain analysis in the vortex generators region. An arbitrary Lagrangian–Eulerian (ALE) formulation is employed for this FSI application. Three-dimensional FSI numerical results illustrate that the maximum magnitude of von Mises stress and elastic strain occurs at the root of the vortex generators and depends on geometrical parameters – geometric shape of VGs, angles of attack (αVG = 15o − 75o ) – and material types. These results reveal that the titanium alloy VGs shows a slightly higher strength and lower elastic strain compared to the aluminium alloy VGs. The lowest values of von Mises stress and elastic strain are obtained for CARW vortex generators and higher values of the von Mises stress and elastic strain occurred for RTW vortex generators, particularly at large attack angles.

(Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Chapter in Book/Report/Conference proceeding
publication status
published
subject
host publication
Proceedings of CHT-15 : 6th International Symposium on Advances in Computational Heat Transfer, 2015 - 6th International Symposium on Advances in Computational Heat Transfer, 2015
series title
International Symposium on Advances in Computational Heat Transfer
pages
12 pages
publisher
Begell House
conference name
6th International Symposium on Advances in Computational Heat Transfer , CHT 2015
conference location
New Brunswick, United States
conference dates
2015-05-25 - 2015-05-29
external identifiers
  • scopus:85120820994
ISSN
2578-5486
ISBN
9781567004298
DOI
10.1615/ICHMT.2015.IntSympAdvComputHeatTransf.300
language
English
LU publication?
yes
id
11f86f89-21f6-493d-b0ea-fb095edaf271
date added to LUP
2022-02-03 15:41:51
date last changed
2022-04-29 00:34:20
@inproceedings{11f86f89-21f6-493d-b0ea-fb095edaf271,
  abstract     = {{<p>A three-dimensional numerical fluid-structure interaction (FSI) framework is successfully carried out on mechanical behaviour of new vortex generators (VGs) – rectangular trapezoidal winglet (RTW), angle rectangular winglet (ARW), curved angle rectangular winglet (CARW) – in smooth wavy fin-and-elliptical tube (SWFET) heat exchanger using the ANSYS MFX Multi-field<sup>®</sup> solver. The purpose of the present study is to provide better understanding of the performance of the vortex generator structures in SWFET heat exchangers associated with the alloy material properties and geometric factors, because change in the flow geometry due to deformation of components affects the flow field and the pressure drop or pumping power in finned tube heat exchangers. The Reynolds-averaged Navier-Stokes (RANS) equations with Shear Stress Transport (SST) k − ω turbulence model are applied for modelling of the turbulent flow in SWFET heat exchanger and the linear elastic Cauchy-Navier model is solved for the structural von Mises stress and elastic strain analysis in the vortex generators region. An arbitrary Lagrangian–Eulerian (ALE) formulation is employed for this FSI application. Three-dimensional FSI numerical results illustrate that the maximum magnitude of von Mises stress and elastic strain occurs at the root of the vortex generators and depends on geometrical parameters – geometric shape of VGs, angles of attack (αVG = 15<sup>o</sup> − 75<sup>o</sup> ) – and material types. These results reveal that the titanium alloy VGs shows a slightly higher strength and lower elastic strain compared to the aluminium alloy VGs. The lowest values of von Mises stress and elastic strain are obtained for CARW vortex generators and higher values of the von Mises stress and elastic strain occurred for RTW vortex generators, particularly at large attack angles.</p>}},
  author       = {{Lotfi, Babak and Sundén, Bengt and Wang, Qiuwang}},
  booktitle    = {{Proceedings of CHT-15 : 6th International Symposium on Advances in Computational Heat Transfer, 2015}},
  isbn         = {{9781567004298}},
  issn         = {{2578-5486}},
  language     = {{eng}},
  pages        = {{356--367}},
  publisher    = {{Begell House}},
  series       = {{International Symposium on Advances in Computational Heat Transfer}},
  title        = {{Three-dimensional fluid-structure interaction numerical simulation of new type vortex generators in smooth wavy fin-and-elliptical tube heat exchanger}},
  url          = {{http://dx.doi.org/10.1615/ICHMT.2015.IntSympAdvComputHeatTransf.300}},
  doi          = {{10.1615/ICHMT.2015.IntSympAdvComputHeatTransf.300}},
  year         = {{2015}},
}