Particle filter-based approximate maximum likelihood inference asymptotics in state-space models
(2007) Conference Oxford sur les méthodes de Monte Carlo séquentielles 19. p.115-120- Abstract
- To implement maximum likelihood estimation in state-space models, the log-likelihood function must be approximated. We study such approximations based on particle filters, and in particular conditions for consistency of the corresponding approximate maximum likelihood estimator. Numerical results illustrate the theory.
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/1271962
- author
- Olsson, Jimmy LU and Rydén, Tobias LU
- organization
- publishing date
- 2007
- type
- Chapter in Book/Report/Conference proceeding
- publication status
- published
- subject
- keywords
- state-space model, consistency, maximum likelihood, Particle filter
- host publication
- ESAIM Proceedings
- volume
- 19
- pages
- 6 pages
- conference name
- Conference Oxford sur les méthodes de Monte Carlo séquentielles
- conference dates
- 0001-01-02
- ISSN
- 1270-900X
- DOI
- 10.1051/proc:071915
- language
- English
- LU publication?
- yes
- id
- 3bc932bd-e0b0-4172-a4ac-45dcad6e1b4d (old id 1271962)
- date added to LUP
- 2016-04-04 09:11:48
- date last changed
- 2018-11-21 20:51:25
@inproceedings{3bc932bd-e0b0-4172-a4ac-45dcad6e1b4d, abstract = {{To implement maximum likelihood estimation in state-space models, the log-likelihood function must be approximated. We study such approximations based on particle filters, and in particular conditions for consistency of the corresponding approximate maximum likelihood estimator. Numerical results illustrate the theory.}}, author = {{Olsson, Jimmy and Rydén, Tobias}}, booktitle = {{ESAIM Proceedings}}, issn = {{1270-900X}}, keywords = {{state-space model; consistency; maximum likelihood; Particle filter}}, language = {{eng}}, pages = {{115--120}}, title = {{Particle filter-based approximate maximum likelihood inference asymptotics in state-space models}}, url = {{http://dx.doi.org/10.1051/proc:071915}}, doi = {{10.1051/proc:071915}}, volume = {{19}}, year = {{2007}}, }