Advanced

Conjugation of penicillin acylase with the reactive copolymer of N-isopropylacrylamide: a step towards thermosensitive industrial biocatalyst.

Ivanov, Alexander LU ; Edink, Ewald; Kumar, Ashok LU ; Galaev, Igor LU ; Arendsen, A; Bruggink, A and Mattiasson, Bo LU (2003) In Biotechnology Progress 19(4). p.1167-1175
Abstract
Conjugation of penicillin acylase (PA) to poly-N-isopropylacrylamide (polyNIPAM) was studied as a way to prepare a thermosensitive biocatalyst for industrial applications to antibiotic synthesis. Condensation of PA with the copolymer of NIPAM containing active ester groups resulted in higher coupling yields of the enzyme (37%) compared to its chemical modification and copolymerization with the monomer (9% coupling yield) at the same NIPAM:enzyme weight ratio of ca. 35. A 10-fold increase of the enzyme loading on the copolymer resulted in 24% coupling yield and increased by 4-fold the specific PA activity of the conjugate. Two molecular forms of the conjugate were found by gel filtration on Sepharose CL 4B: the lower molecular weight... (More)
Conjugation of penicillin acylase (PA) to poly-N-isopropylacrylamide (polyNIPAM) was studied as a way to prepare a thermosensitive biocatalyst for industrial applications to antibiotic synthesis. Condensation of PA with the copolymer of NIPAM containing active ester groups resulted in higher coupling yields of the enzyme (37%) compared to its chemical modification and copolymerization with the monomer (9% coupling yield) at the same NIPAM:enzyme weight ratio of ca. 35. A 10-fold increase of the enzyme loading on the copolymer resulted in 24% coupling yield and increased by 4-fold the specific PA activity of the conjugate. Two molecular forms of the conjugate were found by gel filtration on Sepharose CL 4B: the lower molecular weight fraction of ca. 106 and, presumably, cross-linked protein-polymer aggregates of MW > 107. Michaelis constant for 5-nitro-3-phenylacetamidobenzoic acid hydrolysis by the PA conjugate (20 M) was found to be slightly higher than that of the free enzyme (12 M), and evaluation of Vmax testifies to the high catalytic efficiency of the conjugated enzyme. PolyNIPAM-cross-linked PA retained its capacity to synthesize cephalexin from D-phenylglycin amide and 7-aminodeacetoxycephalosporanic acid. The synthesis-hydrolysis ratios of free and polyNIPAM-cross-linked enzyme in cephalexin synthesis were 7.46 and 7.49, respectively. Thus, diffusional limitation, which is a problem in the industrial production of -lactam antibiotics, can be successfully eliminated by cross-linking penicillin acylase to a smart polymer (i.e., polyNIPAM). (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Biotechnology Progress
volume
19
issue
4
pages
1167 - 1175
publisher
The American Chemical Society
external identifiers
  • wos:000184652800009
  • scopus:0042009774
ISSN
1520-6033
DOI
10.1021/bp0201455
language
English
LU publication?
yes
id
8383c9e3-e4b0-4403-b19a-7c4facd91a86 (old id 129136)
date added to LUP
2007-07-02 11:35:54
date last changed
2017-04-23 04:31:24
@article{8383c9e3-e4b0-4403-b19a-7c4facd91a86,
  abstract     = {Conjugation of penicillin acylase (PA) to poly-N-isopropylacrylamide (polyNIPAM) was studied as a way to prepare a thermosensitive biocatalyst for industrial applications to antibiotic synthesis. Condensation of PA with the copolymer of NIPAM containing active ester groups resulted in higher coupling yields of the enzyme (37%) compared to its chemical modification and copolymerization with the monomer (9% coupling yield) at the same NIPAM:enzyme weight ratio of ca. 35. A 10-fold increase of the enzyme loading on the copolymer resulted in 24% coupling yield and increased by 4-fold the specific PA activity of the conjugate. Two molecular forms of the conjugate were found by gel filtration on Sepharose CL 4B: the lower molecular weight fraction of ca. 106 and, presumably, cross-linked protein-polymer aggregates of MW > 107. Michaelis constant for 5-nitro-3-phenylacetamidobenzoic acid hydrolysis by the PA conjugate (20 M) was found to be slightly higher than that of the free enzyme (12 M), and evaluation of Vmax testifies to the high catalytic efficiency of the conjugated enzyme. PolyNIPAM-cross-linked PA retained its capacity to synthesize cephalexin from D-phenylglycin amide and 7-aminodeacetoxycephalosporanic acid. The synthesis-hydrolysis ratios of free and polyNIPAM-cross-linked enzyme in cephalexin synthesis were 7.46 and 7.49, respectively. Thus, diffusional limitation, which is a problem in the industrial production of -lactam antibiotics, can be successfully eliminated by cross-linking penicillin acylase to a smart polymer (i.e., polyNIPAM).},
  author       = {Ivanov, Alexander and Edink, Ewald and Kumar, Ashok and Galaev, Igor and Arendsen, A and Bruggink, A and Mattiasson, Bo},
  issn         = {1520-6033},
  language     = {eng},
  number       = {4},
  pages        = {1167--1175},
  publisher    = {The American Chemical Society},
  series       = {Biotechnology Progress},
  title        = {Conjugation of penicillin acylase with the reactive copolymer of N-isopropylacrylamide: a step towards thermosensitive industrial biocatalyst.},
  url          = {http://dx.doi.org/10.1021/bp0201455},
  volume       = {19},
  year         = {2003},
}