Advanced

The Roles of the Olivocerebellar Pathway in Motor Learning and Motor Control. A Consensus Paper

Lang, Eric J.; Apps, Richard; Bengtsson, Fredrik LU ; Cerminara, Nadia L.; de Zeeuw, Chris I.; Ebner, Timothy J.; Heck, Detlef H.; Jaeger, Dieter; Jörntell, Henrik LU and Kawato, Mitsuo, et al. (2016) In Cerebellum p.1-23
Abstract

For many decades, the predominant view in the cerebellar field has been that the olivocerebellar system’s primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here, we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum and might also play a role in development.... (More)

For many decades, the predominant view in the cerebellar field has been that the olivocerebellar system’s primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here, we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum and might also play a role in development. We then consider the potential problems and benefits of it having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, and variable complex spike waveforms) make it more or less suitable for one or the other of these functions, and why having multiple functions makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest that it has the potential to act in both the motor learning and motor control functions of the cerebellum.

(Less)
Please use this url to cite or link to this publication:
author
, et al. (More)
(Less)
organization
publishing date
type
Contribution to journal
publication status
in press
subject
keywords
Cerebellum, Complex spike, Inferior olive, Motor control, Motor learning, Purkinje cell, Synchrony
in
Cerebellum
pages
23 pages
publisher
Informa Healthcare
external identifiers
  • Scopus:84969750566
ISSN
1473-4222
DOI
10.1007/s12311-016-0787-8
language
English
LU publication?
yes
id
12bd3c72-807b-4eeb-a5aa-ea5811350bf9
date added to LUP
2016-06-17 17:28:46
date last changed
2017-02-02 09:58:39
@article{12bd3c72-807b-4eeb-a5aa-ea5811350bf9,
  abstract     = {<p>For many decades, the predominant view in the cerebellar field has been that the olivocerebellar system’s primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here, we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum and might also play a role in development. We then consider the potential problems and benefits of it having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, and variable complex spike waveforms) make it more or less suitable for one or the other of these functions, and why having multiple functions makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest that it has the potential to act in both the motor learning and motor control functions of the cerebellum.</p>},
  author       = {Lang, Eric J. and Apps, Richard and Bengtsson, Fredrik and Cerminara, Nadia L. and de Zeeuw, Chris I. and Ebner, Timothy J. and Heck, Detlef H. and Jaeger, Dieter and Jörntell, Henrik and Kawato, Mitsuo and Otis, Thomas S. and Ozyildirim, Ozgecan and Popa, Laurentiu S. and Reeves, Alexander M B and Schweighofer, Nicolas and Sugihara, Izumi and Xiao, Jianqiang},
  issn         = {1473-4222},
  keyword      = {Cerebellum,Complex spike,Inferior olive,Motor control,Motor learning,Purkinje cell,Synchrony},
  language     = {eng},
  month        = {05},
  pages        = {1--23},
  publisher    = {Informa Healthcare},
  series       = {Cerebellum},
  title        = {The Roles of the Olivocerebellar Pathway in Motor Learning and Motor Control. A Consensus Paper},
  url          = {http://dx.doi.org/10.1007/s12311-016-0787-8},
  year         = {2016},
}