Advanced

Analytical energy gradients for local second-order Moller-Plesset perturbation theory using density fitting approximations

Schutz, M; Werner, H J; Lindh, Roland LU and Manby, F R (2004) In Journal of Chemical Physics 121(2). p.737-750
Abstract
An efficient method to compute analytical energy derivatives for local second-order Moller-Plesset perturbation energy is presented. Density fitting approximations are employed for all 4-index integrals and their derivatives. Using local fitting approximations, quadratic scaling with molecular size and cubic scaling with basis set size for a given molecule is achieved. The density fitting approximations have a negligible effect on the accuracy of optimized equilibrium structures or computed energy differences. The method can be applied to much larger molecules and basis sets than any previous second-order Moller-Plesset gradient program. The efficiency and accuracy of the method is demonstrated for a number of organic molecules as well as... (More)
An efficient method to compute analytical energy derivatives for local second-order Moller-Plesset perturbation energy is presented. Density fitting approximations are employed for all 4-index integrals and their derivatives. Using local fitting approximations, quadratic scaling with molecular size and cubic scaling with basis set size for a given molecule is achieved. The density fitting approximations have a negligible effect on the accuracy of optimized equilibrium structures or computed energy differences. The method can be applied to much larger molecules and basis sets than any previous second-order Moller-Plesset gradient program. The efficiency and accuracy of the method is demonstrated for a number of organic molecules as well as for molecular clusters. Examples of geometry optimizations for molecules with 100 atoms and over 2000 basis functions without symmetry are presented. (C) 2004 American Institute of Physics. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Chemical Physics
volume
121
issue
2
pages
737 - 750
publisher
American Institute of Physics
external identifiers
  • wos:000222265600015
  • scopus:3242693466
ISSN
0021-9606
DOI
10.1063/1.1760747
language
English
LU publication?
yes
id
8886a823-5f65-4993-abf0-90babb4b056a (old id 138999)
date added to LUP
2007-07-03 16:48:45
date last changed
2017-11-05 03:37:48
@article{8886a823-5f65-4993-abf0-90babb4b056a,
  abstract     = {An efficient method to compute analytical energy derivatives for local second-order Moller-Plesset perturbation energy is presented. Density fitting approximations are employed for all 4-index integrals and their derivatives. Using local fitting approximations, quadratic scaling with molecular size and cubic scaling with basis set size for a given molecule is achieved. The density fitting approximations have a negligible effect on the accuracy of optimized equilibrium structures or computed energy differences. The method can be applied to much larger molecules and basis sets than any previous second-order Moller-Plesset gradient program. The efficiency and accuracy of the method is demonstrated for a number of organic molecules as well as for molecular clusters. Examples of geometry optimizations for molecules with 100 atoms and over 2000 basis functions without symmetry are presented. (C) 2004 American Institute of Physics.},
  author       = {Schutz, M and Werner, H J and Lindh, Roland and Manby, F R},
  issn         = {0021-9606},
  language     = {eng},
  number       = {2},
  pages        = {737--750},
  publisher    = {American Institute of Physics},
  series       = {Journal of Chemical Physics},
  title        = {Analytical energy gradients for local second-order Moller-Plesset perturbation theory using density fitting approximations},
  url          = {http://dx.doi.org/10.1063/1.1760747},
  volume       = {121},
  year         = {2004},
}