Advanced

Three-Dimensional Simulation of Nanoindentation Response of Viral Capsids. Shape and Size Effects

Ahadi, Aylin LU ; Colomo, Josep and Evilevitch, Alex LU (2009) In The Journal of Physical Chemistry Part B 113(11). p.3370-3378
Abstract
The nanoindentation response of empty viral capsids is modeled using three-dimensional finite element analysis. Simulation with two different geometries, spherical and icosahedral, is performed using the finite element code Abaqus. The capsids are modeled as nonlinear Hookean elastic, and both small and large deformation analysis is performed. The Young's modulus is determined by calibrating the force-indentation curve to data from atomic force microscopy (AFM) experiments. Force-indentation curves for three different viral capsids are directly compared to experimental data. Predictions are made for two additional viral capsids. The results from the simulation showed a good agreement with AFM data. The paper demonstrates that over the... (More)
The nanoindentation response of empty viral capsids is modeled using three-dimensional finite element analysis. Simulation with two different geometries, spherical and icosahedral, is performed using the finite element code Abaqus. The capsids are modeled as nonlinear Hookean elastic, and both small and large deformation analysis is performed. The Young's modulus is determined by calibrating the force-indentation curve to data from atomic force microscopy (AFM) experiments. Force-indentation curves for three different viral capsids are directly compared to experimental data. Predictions are made for two additional viral capsids. The results from the simulation showed a good agreement with AFM data. The paper demonstrates that over the entire range of virus sizes (or Foppl-von Karman numbers) spherical and icosahedral models yield different force responses. In particular, it is shown that capsids with dominantly spherical shape (for low Foppl-von Karman numbers) exhibit nearly linear relationship between force and indentation, which has been experimentally observed on the viral shell studies so far. However, we predict that capsids with significant faceting (for large Foppl-von Karman numbers) and thus more pronounced icosahedral shape will exhibit rather nonlinear deformation behavior. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
AFM, indentation test, simulation, viral capsids
in
The Journal of Physical Chemistry Part B
volume
113
issue
11
pages
3370 - 3378
publisher
The American Chemical Society
external identifiers
  • wos:000264111200016
  • pmid:19243104
  • scopus:65249149718
ISSN
1520-5207
DOI
10.1021/jp8089352
language
English
LU publication?
yes
id
c830764a-0326-4cfa-a8c3-0deeb5721857 (old id 1404673)
date added to LUP
2009-06-15 09:46:03
date last changed
2017-01-01 05:20:46
@article{c830764a-0326-4cfa-a8c3-0deeb5721857,
  abstract     = {The nanoindentation response of empty viral capsids is modeled using three-dimensional finite element analysis. Simulation with two different geometries, spherical and icosahedral, is performed using the finite element code Abaqus. The capsids are modeled as nonlinear Hookean elastic, and both small and large deformation analysis is performed. The Young's modulus is determined by calibrating the force-indentation curve to data from atomic force microscopy (AFM) experiments. Force-indentation curves for three different viral capsids are directly compared to experimental data. Predictions are made for two additional viral capsids. The results from the simulation showed a good agreement with AFM data. The paper demonstrates that over the entire range of virus sizes (or Foppl-von Karman numbers) spherical and icosahedral models yield different force responses. In particular, it is shown that capsids with dominantly spherical shape (for low Foppl-von Karman numbers) exhibit nearly linear relationship between force and indentation, which has been experimentally observed on the viral shell studies so far. However, we predict that capsids with significant faceting (for large Foppl-von Karman numbers) and thus more pronounced icosahedral shape will exhibit rather nonlinear deformation behavior.},
  author       = {Ahadi, Aylin and Colomo, Josep and Evilevitch, Alex},
  issn         = {1520-5207},
  keyword      = {AFM,indentation test,simulation,viral capsids},
  language     = {eng},
  number       = {11},
  pages        = {3370--3378},
  publisher    = {The American Chemical Society},
  series       = {The Journal of Physical Chemistry Part B},
  title        = {Three-Dimensional Simulation of Nanoindentation Response of Viral Capsids. Shape and Size Effects},
  url          = {http://dx.doi.org/10.1021/jp8089352},
  volume       = {113},
  year         = {2009},
}