Advanced

Modeling through drying of tissue-effect of pore size distribution on drying characteristics

Weineisen, Henrik LU and Stenström, Stig LU (2005) In Drying Technology 23(9-11). p.1909-1923
Abstract
A general model for through drying of tissue was developed based on the equations of continuity in combination with correlations for heat and mass transfer. The model incorporates different geometric descriptions together with corresponding heat and mass transfer correlations for flow through cylindrical conduits and flow through packed beds of cylindrical fibers. At low intensities, i.e., at low airflow rates and low drying air temperatures, the model shows very good agreement with experimental data found in the literature and accurately predicts a period of constant drying rate due to saturation of the drying air. However, at higher drying intensities, the model predicts drying rates that are generally higher than what is found in... (More)
A general model for through drying of tissue was developed based on the equations of continuity in combination with correlations for heat and mass transfer. The model incorporates different geometric descriptions together with corresponding heat and mass transfer correlations for flow through cylindrical conduits and flow through packed beds of cylindrical fibers. At low intensities, i.e., at low airflow rates and low drying air temperatures, the model shows very good agreement with experimental data found in the literature and accurately predicts a period of constant drying rate due to saturation of the drying air. However, at higher drying intensities, the model predicts drying rates that are generally higher than what is found in experimental studies described in the literature. The model also predicts a period of constant drying rate that has not been observed in experiments at higher drying intensities. To illustrate the effect of nonuniform pore size distribution on the average drying rate, a model including a variable pore size distribution was developed. The results show that the early onset of the falling rate period in through drying at higher intensities could be explained by channelling effects caused by a nonuniform pore size distribution. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Drying Technology
volume
23
issue
9-11
pages
1909 - 1923
publisher
TAPPI
external identifiers
  • wos:000232422200012
  • scopus:27144550775
ISSN
1532-2300
DOI
10.1080/07373930500210317
language
English
LU publication?
yes
id
91c366c2-614c-424f-bcbc-42c5e6e13d92 (old id 151602)
date added to LUP
2007-06-25 16:39:02
date last changed
2017-02-19 03:34:04
@article{91c366c2-614c-424f-bcbc-42c5e6e13d92,
  abstract     = {A general model for through drying of tissue was developed based on the equations of continuity in combination with correlations for heat and mass transfer. The model incorporates different geometric descriptions together with corresponding heat and mass transfer correlations for flow through cylindrical conduits and flow through packed beds of cylindrical fibers. At low intensities, i.e., at low airflow rates and low drying air temperatures, the model shows very good agreement with experimental data found in the literature and accurately predicts a period of constant drying rate due to saturation of the drying air. However, at higher drying intensities, the model predicts drying rates that are generally higher than what is found in experimental studies described in the literature. The model also predicts a period of constant drying rate that has not been observed in experiments at higher drying intensities. To illustrate the effect of nonuniform pore size distribution on the average drying rate, a model including a variable pore size distribution was developed. The results show that the early onset of the falling rate period in through drying at higher intensities could be explained by channelling effects caused by a nonuniform pore size distribution.},
  author       = {Weineisen, Henrik and Stenström, Stig},
  issn         = {1532-2300},
  language     = {eng},
  number       = {9-11},
  pages        = {1909--1923},
  publisher    = {TAPPI},
  series       = {Drying Technology},
  title        = {Modeling through drying of tissue-effect of pore size distribution on drying characteristics},
  url          = {http://dx.doi.org/10.1080/07373930500210317},
  volume       = {23},
  year         = {2005},
}