Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Hydrodynamics of surface swimming in leopard frogs (Rana pipiens)

Johansson, Christoffer LU and Lauder, G V (2004) In Journal of Experimental Biology 207(22). p.3945-3958
Abstract
The kinematics of swimming frogs have been studied extensively in the past and, based on these results, hypotheses regarding the hydrodynamics of frog swimming can be generated. To test these hypotheses we used digital particle image velocimetry (DPIV) to quantify the flow structure of the wake produced by the feet during the propulsion phase of the kick of surface swimming frogs (Rana pipiens). These frogs use two different gaits, asynchronous and synchronous kicking, and the magnitude of the thrust produced by the feet differs between asynchronous (34±5.4 mN foot–1) and synchronous kicking (71±13.3 mN foot–1), as does maximum swimming speed, with higher swimming speed and forces produced during the synchronous kicks. Previous studies... (More)
The kinematics of swimming frogs have been studied extensively in the past and, based on these results, hypotheses regarding the hydrodynamics of frog swimming can be generated. To test these hypotheses we used digital particle image velocimetry (DPIV) to quantify the flow structure of the wake produced by the feet during the propulsion phase of the kick of surface swimming frogs (Rana pipiens). These frogs use two different gaits, asynchronous and synchronous kicking, and the magnitude of the thrust produced by the feet differs between asynchronous (34±5.4 mN foot–1) and synchronous kicking (71±13.3 mN foot–1), as does maximum swimming speed, with higher swimming speed and forces produced during the synchronous kicks. Previous studies have suggested that an interaction between the feet, resulting in a single posteriorly directed fluid jet, as the feet come together at the end of synchronous kicks, may augment force production. Our results show, however, that each foot produces its own distinct vortex ring, in both asynchronous and synchronous kicking of the feet. There is no evidence of a central jet being produced even during powerful synchronous kicks (maximum thrust calculated was 264 mN foot–1). An alternative mechanism of force production could be the lift-based paddling recently suggested for delta-shaped feet of swimming birds. However, the orientation of the vortex rings generated by the feet is almost perpendicular to the swimming direction for both gaits and there is only a slight asynchrony of the shedding of the distal (start) and proximal (stop) vortex rings, which is different from what would be expected by a dominantly lift-based mechanism. Thus, our results do not support lift as a major mechanism contributing to thrust. Instead, our data support the hypothesis that propulsion is based on drag and acceleration reaction forces where the thrust is generated by separated, but attached, vortex rings on the suction side of the feet, resulting in vortices that are shed behind the frogs during both asynchronous and synchronous kicking. (Less)
Please use this url to cite or link to this publication:
author
and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Experimental Biology
volume
207
issue
22
pages
3945 - 3958
publisher
The Company of Biologists Ltd
external identifiers
  • pmid:15472025
  • wos:000225669600016
  • scopus:10344245099
ISSN
1477-9145
DOI
10.1242/jeb.01258
language
English
LU publication?
yes
id
de702257-ba1e-4f58-a48e-c3ff95ddd142 (old id 153188)
date added to LUP
2016-04-01 12:11:59
date last changed
2022-01-27 00:16:19
@article{de702257-ba1e-4f58-a48e-c3ff95ddd142,
  abstract     = {{The kinematics of swimming frogs have been studied extensively in the past and, based on these results, hypotheses regarding the hydrodynamics of frog swimming can be generated. To test these hypotheses we used digital particle image velocimetry (DPIV) to quantify the flow structure of the wake produced by the feet during the propulsion phase of the kick of surface swimming frogs (Rana pipiens). These frogs use two different gaits, asynchronous and synchronous kicking, and the magnitude of the thrust produced by the feet differs between asynchronous (34±5.4 mN foot–1) and synchronous kicking (71±13.3 mN foot–1), as does maximum swimming speed, with higher swimming speed and forces produced during the synchronous kicks. Previous studies have suggested that an interaction between the feet, resulting in a single posteriorly directed fluid jet, as the feet come together at the end of synchronous kicks, may augment force production. Our results show, however, that each foot produces its own distinct vortex ring, in both asynchronous and synchronous kicking of the feet. There is no evidence of a central jet being produced even during powerful synchronous kicks (maximum thrust calculated was 264 mN foot–1). An alternative mechanism of force production could be the lift-based paddling recently suggested for delta-shaped feet of swimming birds. However, the orientation of the vortex rings generated by the feet is almost perpendicular to the swimming direction for both gaits and there is only a slight asynchrony of the shedding of the distal (start) and proximal (stop) vortex rings, which is different from what would be expected by a dominantly lift-based mechanism. Thus, our results do not support lift as a major mechanism contributing to thrust. Instead, our data support the hypothesis that propulsion is based on drag and acceleration reaction forces where the thrust is generated by separated, but attached, vortex rings on the suction side of the feet, resulting in vortices that are shed behind the frogs during both asynchronous and synchronous kicking.}},
  author       = {{Johansson, Christoffer and Lauder, G V}},
  issn         = {{1477-9145}},
  language     = {{eng}},
  number       = {{22}},
  pages        = {{3945--3958}},
  publisher    = {{The Company of Biologists Ltd}},
  series       = {{Journal of Experimental Biology}},
  title        = {{Hydrodynamics of surface swimming in leopard frogs (Rana pipiens)}},
  url          = {{http://dx.doi.org/10.1242/jeb.01258}},
  doi          = {{10.1242/jeb.01258}},
  volume       = {{207}},
  year         = {{2004}},
}