Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Heat storage in forest biomass improves energy balance closure

Lindroth, Anders LU ; Mölder, Meelis LU and Lagergren, Fredrik LU (2010) In Biogeosciences 7(1). p.301-313
Abstract
Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period... (More)
Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m(-2) on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m(-2) and the minimum was -35 W m(-2). The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation very well. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy covariance measurements can function well during stable conditions but that the functioning under strong instabilities might be a so far unforeseen problem. (Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Biogeosciences
volume
7
issue
1
pages
301 - 313
publisher
Copernicus GmbH
external identifiers
  • wos:000274058100022
  • scopus:76249119108
ISSN
1726-4189
language
English
LU publication?
yes
id
dbd6574f-8479-4c8f-a4b5-5eefa64fa5a7 (old id 1571187)
date added to LUP
2016-04-01 10:51:10
date last changed
2022-04-20 06:47:36
@article{dbd6574f-8479-4c8f-a4b5-5eefa64fa5a7,
  abstract     = {{Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m(-2) on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m(-2) and the minimum was -35 W m(-2). The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation very well. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy covariance measurements can function well during stable conditions but that the functioning under strong instabilities might be a so far unforeseen problem.}},
  author       = {{Lindroth, Anders and Mölder, Meelis and Lagergren, Fredrik}},
  issn         = {{1726-4189}},
  language     = {{eng}},
  number       = {{1}},
  pages        = {{301--313}},
  publisher    = {{Copernicus GmbH}},
  series       = {{Biogeosciences}},
  title        = {{Heat storage in forest biomass improves energy balance closure}},
  volume       = {{7}},
  year         = {{2010}},
}