Weyl product algebras and classical modulation spaces
(2010) Linear and Non-linear Theory of Generalized Functions and Its Applications 88. p.153-158- Abstract
- We discuss continuity properties of the Weyl product when acting on classical
modulation spaces. In particular, we prove that M^{p,q} is an algebra under
the Weyl product when p>=1 and 1=<q=<min(p,p').
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/1579187
- author
- Holst, Anders LU ; Toft, Joachim and Wahlberg, Patrik
- organization
- publishing date
- 2010
- type
- Chapter in Book/Report/Conference proceeding
- publication status
- published
- subject
- keywords
- pseudo-differential calculus, Weyl calculus, modulation spaces, Banach, algebras
- host publication
- Banach center publications
- editor
- Biler, Piotr ; Grabowski, Janusz ; Kaczorowski, Jerzy and Wojtaszczyk, Przemyslaw
- volume
- 88
- pages
- 6 pages
- publisher
- Institute of Mathematics, Polish Academy of Sciences
- conference name
- Linear and Non-linear Theory of Generalized Functions and Its Applications
- conference location
- Bedlewo, Poland
- conference dates
- 2007-09-02 - 2007-09-08
- ISSN
- 0137-6934
- 1730-6299
- ISBN
- 978-83-86806-07-2
- DOI
- 10.4064/bc88-0-12
- language
- English
- LU publication?
- yes
- id
- e799b725-4815-44ad-9b18-d3d6b2b24433 (old id 1579187)
- date added to LUP
- 2016-04-01 10:31:22
- date last changed
- 2018-11-21 19:47:16
@inproceedings{e799b725-4815-44ad-9b18-d3d6b2b24433, abstract = {{We discuss continuity properties of the Weyl product when acting on classical<br/><br> modulation spaces. In particular, we prove that M^{p,q} is an algebra under<br/><br> the Weyl product when p>=1 and 1=<q=<min(p,p').}}, author = {{Holst, Anders and Toft, Joachim and Wahlberg, Patrik}}, booktitle = {{Banach center publications}}, editor = {{Biler, Piotr and Grabowski, Janusz and Kaczorowski, Jerzy and Wojtaszczyk, Przemyslaw}}, isbn = {{978-83-86806-07-2}}, issn = {{0137-6934}}, keywords = {{pseudo-differential calculus; Weyl calculus; modulation spaces; Banach; algebras}}, language = {{eng}}, pages = {{153--158}}, publisher = {{Institute of Mathematics, Polish Academy of Sciences}}, title = {{Weyl product algebras and classical modulation spaces}}, url = {{http://dx.doi.org/10.4064/bc88-0-12}}, doi = {{10.4064/bc88-0-12}}, volume = {{88}}, year = {{2010}}, }