Advanced

Budesonide Prevents Cytokine-Induced Decrease of the Relaxant Responses to Formoterol and Terbutaline, but Not to Salmeterol, in Mouse Trachea

Adner, Mikael; Larsson, Bengt LU ; Safholm, Jesper; Naya, Ian and Miller-Larsson, Anna (2010) In Journal of Pharmacology and Experimental Therapeutics 333(1). p.273-280
Abstract
During asthma exacerbations, increased airway inflammation may impair the effects of beta(2)-adrenoceptor (beta(2)AR) agonists. It is unclear whether this impairment is prevented by inhaled glucocorticoids (GCs). We have investigated the relaxation of carbachol-contracted mouse tracheal segments to the beta(2)AR agonists formoterol, terbutaline, and salmeterol. The segments were pre-exposed for 4 days to the proinflammatory cytokines tumor necrosis factor alpha (100 ng/ml) and interleukin-1 beta (10 ng/ml) with or without the GC, budesonide (1 mu M). Formoterol and terbutaline induced greater maximal relaxation (R-max)than salmeterol. The cytokines decreased R-max of all beta(2)AR agonists, whereas budesonide had no effect. However, after... (More)
During asthma exacerbations, increased airway inflammation may impair the effects of beta(2)-adrenoceptor (beta(2)AR) agonists. It is unclear whether this impairment is prevented by inhaled glucocorticoids (GCs). We have investigated the relaxation of carbachol-contracted mouse tracheal segments to the beta(2)AR agonists formoterol, terbutaline, and salmeterol. The segments were pre-exposed for 4 days to the proinflammatory cytokines tumor necrosis factor alpha (100 ng/ml) and interleukin-1 beta (10 ng/ml) with or without the GC, budesonide (1 mu M). Formoterol and terbutaline induced greater maximal relaxation (R-max)than salmeterol. The cytokines decreased R-max of all beta(2)AR agonists, whereas budesonide had no effect. However, after concomitant treatment with cytokines and budesonide, the R-max values of formoterol and terbutaline were not impaired, whereas budesonide did not prevent the decrease in the R-max of salmeterol. A similar pattern was observed for cAMP production by the agonists. In tracheal smooth muscle, beta(2)AR mRNA was not affected by the cytokines but increased with budesonide. However, the cytokines markedly increased cyclooxygenase (COX)-2 mRNA expression, which may lead to heterologous desensitization of beta(2)AR. It is noteworthy that the cytokine-induced increase of COX-2 was blocked by concomitant budesonide suggesting that heterologous desensitization of beta(2)AR by the cytokines may be prevented by budesonide treatment. Budesonide prevented cytokine-induced impairment of the tracheal relaxation and beta(2)AR/cAMP signaling for formoterol but not for salmeterol. This suggests that differences exist between formoterol and salmeterol in beta(2)AR coupling/activation and/or signal transduction upstream of cAMP. These results imply that maximal bronchodilator effects of formoterol, but not of salmeterol, are maintained by budesonide treatment during periods with increased inflammation, such as asthma exacerbations. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Pharmacology and Experimental Therapeutics
volume
333
issue
1
pages
273 - 280
publisher
American Society for Pharmacology and Experimental Therapeutics
external identifiers
  • wos:000275793200029
  • scopus:77949676634
ISSN
1521-0103
DOI
10.1124/jpet.109.156224
language
English
LU publication?
yes
id
79f7151d-b810-46dc-a785-0818b8f0f8fb (old id 1587978)
date added to LUP
2010-04-22 11:21:58
date last changed
2018-05-29 12:19:38
@article{79f7151d-b810-46dc-a785-0818b8f0f8fb,
  abstract     = {During asthma exacerbations, increased airway inflammation may impair the effects of beta(2)-adrenoceptor (beta(2)AR) agonists. It is unclear whether this impairment is prevented by inhaled glucocorticoids (GCs). We have investigated the relaxation of carbachol-contracted mouse tracheal segments to the beta(2)AR agonists formoterol, terbutaline, and salmeterol. The segments were pre-exposed for 4 days to the proinflammatory cytokines tumor necrosis factor alpha (100 ng/ml) and interleukin-1 beta (10 ng/ml) with or without the GC, budesonide (1 mu M). Formoterol and terbutaline induced greater maximal relaxation (R-max)than salmeterol. The cytokines decreased R-max of all beta(2)AR agonists, whereas budesonide had no effect. However, after concomitant treatment with cytokines and budesonide, the R-max values of formoterol and terbutaline were not impaired, whereas budesonide did not prevent the decrease in the R-max of salmeterol. A similar pattern was observed for cAMP production by the agonists. In tracheal smooth muscle, beta(2)AR mRNA was not affected by the cytokines but increased with budesonide. However, the cytokines markedly increased cyclooxygenase (COX)-2 mRNA expression, which may lead to heterologous desensitization of beta(2)AR. It is noteworthy that the cytokine-induced increase of COX-2 was blocked by concomitant budesonide suggesting that heterologous desensitization of beta(2)AR by the cytokines may be prevented by budesonide treatment. Budesonide prevented cytokine-induced impairment of the tracheal relaxation and beta(2)AR/cAMP signaling for formoterol but not for salmeterol. This suggests that differences exist between formoterol and salmeterol in beta(2)AR coupling/activation and/or signal transduction upstream of cAMP. These results imply that maximal bronchodilator effects of formoterol, but not of salmeterol, are maintained by budesonide treatment during periods with increased inflammation, such as asthma exacerbations.},
  author       = {Adner, Mikael and Larsson, Bengt and Safholm, Jesper and Naya, Ian and Miller-Larsson, Anna},
  issn         = {1521-0103},
  language     = {eng},
  number       = {1},
  pages        = {273--280},
  publisher    = {American Society for Pharmacology and Experimental Therapeutics},
  series       = {Journal of Pharmacology and Experimental Therapeutics},
  title        = {Budesonide Prevents Cytokine-Induced Decrease of the Relaxant Responses to Formoterol and Terbutaline, but Not to Salmeterol, in Mouse Trachea},
  url          = {http://dx.doi.org/10.1124/jpet.109.156224},
  volume       = {333},
  year         = {2010},
}