Advanced

Electron localization following attosecond molecular photoionization

Sansone, G.; Kelkensberg, F.; Perez-Torres, J. F.; Morales, F.; Kling, M. F.; Siu, W.; Ghafur, O.; Johnsson, Per LU ; Swoboda, Marko LU and Benedetti, E., et al. (2010) In Nature 465(7299). p.3-763
Abstract
For the past several decades, we have been able to directly probe the motion of atoms that is associated with chemical transformations and which occurs on the femtosecond (10(-15)-s) timescale. However, studying the inner workings of atoms and molecules on the electronic timescale(1-4) has become possible only with the recent development of isolated attosecond (10(-18)-s) laser pulses(5). Such pulses have been used to investigate atomic photoexcitation and photoionization(6,7) and electron dynamics in solids(8), and in molecules could help explore the prompt charge redistribution and localization that accompany photoexcitation processes. In recent work, the dissociative ionization of H-2 and D-2 was monitored on femtosecond timescales(9)... (More)
For the past several decades, we have been able to directly probe the motion of atoms that is associated with chemical transformations and which occurs on the femtosecond (10(-15)-s) timescale. However, studying the inner workings of atoms and molecules on the electronic timescale(1-4) has become possible only with the recent development of isolated attosecond (10(-18)-s) laser pulses(5). Such pulses have been used to investigate atomic photoexcitation and photoionization(6,7) and electron dynamics in solids(8), and in molecules could help explore the prompt charge redistribution and localization that accompany photoexcitation processes. In recent work, the dissociative ionization of H-2 and D-2 was monitored on femtosecond timescales(9) and controlled using few-cycle near-infrared laser pulses(10). Here we report a molecular attosecond pump-probe experiment based on that work: H-2 and D-2 are dissociatively ionized by a sequence comprising an isolated attosecond ultraviolet pulse and an intense few-cycle infrared pulse, and a localization of the electronic charge distribution within the molecule is measured that depends-with attosecond time resolution-on the delay between the pump and probe pulses. The localization occurs by means of two mechanisms, where the infrared laser influences the photoionization or the dissociation of the molecular ion. In the first case, charge localization arises from quantum mechanical interference involving autoionizing states and the laser-altered wavefunction of the departing electron. In the second case, charge localization arises owing to laser-driven population transfer between different electronic states of the molecular ion. These results establish attosecond pump-probe strategies as a powerful tool for investigating the complex molecular dynamics that result from the coupling between electronic and nuclear motions beyond the usual Born-Oppenheimer approximation. (Less)
Please use this url to cite or link to this publication:
author
, et al. (More)
(Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Nature
volume
465
issue
7299
pages
3 - 763
publisher
Nature Publishing Group
external identifiers
  • wos:000278551800041
  • scopus:77953464670
ISSN
0028-0836
DOI
10.1038/nature09084
language
English
LU publication?
yes
id
705c964e-b0f0-47a3-9b85-eb67ca91f39e (old id 1631734)
date added to LUP
2010-07-22 12:30:04
date last changed
2018-07-08 03:06:10
@article{705c964e-b0f0-47a3-9b85-eb67ca91f39e,
  abstract     = {For the past several decades, we have been able to directly probe the motion of atoms that is associated with chemical transformations and which occurs on the femtosecond (10(-15)-s) timescale. However, studying the inner workings of atoms and molecules on the electronic timescale(1-4) has become possible only with the recent development of isolated attosecond (10(-18)-s) laser pulses(5). Such pulses have been used to investigate atomic photoexcitation and photoionization(6,7) and electron dynamics in solids(8), and in molecules could help explore the prompt charge redistribution and localization that accompany photoexcitation processes. In recent work, the dissociative ionization of H-2 and D-2 was monitored on femtosecond timescales(9) and controlled using few-cycle near-infrared laser pulses(10). Here we report a molecular attosecond pump-probe experiment based on that work: H-2 and D-2 are dissociatively ionized by a sequence comprising an isolated attosecond ultraviolet pulse and an intense few-cycle infrared pulse, and a localization of the electronic charge distribution within the molecule is measured that depends-with attosecond time resolution-on the delay between the pump and probe pulses. The localization occurs by means of two mechanisms, where the infrared laser influences the photoionization or the dissociation of the molecular ion. In the first case, charge localization arises from quantum mechanical interference involving autoionizing states and the laser-altered wavefunction of the departing electron. In the second case, charge localization arises owing to laser-driven population transfer between different electronic states of the molecular ion. These results establish attosecond pump-probe strategies as a powerful tool for investigating the complex molecular dynamics that result from the coupling between electronic and nuclear motions beyond the usual Born-Oppenheimer approximation.},
  author       = {Sansone, G. and Kelkensberg, F. and Perez-Torres, J. F. and Morales, F. and Kling, M. F. and Siu, W. and Ghafur, O. and Johnsson, Per and Swoboda, Marko and Benedetti, E. and Ferrari, F. and Lepine, F. and Sanz-Vicario, J. L. and Zherebtsov, S. and Znakovskaya, I. and L'Huillier, Anne and Ivanov, M. Yu. and Nisoli, M. and Martin, F. and Vrakking, M. J. J.},
  issn         = {0028-0836},
  language     = {eng},
  number       = {7299},
  pages        = {3--763},
  publisher    = {Nature Publishing Group},
  series       = {Nature},
  title        = {Electron localization following attosecond molecular photoionization},
  url          = {http://dx.doi.org/10.1038/nature09084},
  volume       = {465},
  year         = {2010},
}