Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Fungal and bacterial growth responses to N fertilization and pH in the 150-year 'Park Grass' UK grassland experiment.

Rousk, Johannes LU ; Brookes, Philip C and Bååth, Erland LU (2011) In FEMS Microbiology Ecology 76. p.89-99
Abstract
The effects of nitrogen (N) fertilization (0-150 kg N ha(-1) year(-1) since 1865) and pH (3.3-7.4) on fungal and bacterial growth, biomass and phospholipid fatty acid (PLFA) composition were investigated in grassland soils from the 'Park Grass Experiment', Rothamsted Research, UK. Bacterial growth decreased and fungal growth increased with lower pH, resulting in a 50-fold increase in the relative importance of fungi between pH 7.4 and 3.3. The PLFA-based fungal : bacterial biomass ratio was unchanged between pH 4.5 and 7.4, and decreased only below pH 4.5. Respiration and substrate-induced respiration biomass both decreased three- to fourfold with lower pH, but biomass concentrations estimated using PLFAs were unaffected by pH. N... (More)
The effects of nitrogen (N) fertilization (0-150 kg N ha(-1) year(-1) since 1865) and pH (3.3-7.4) on fungal and bacterial growth, biomass and phospholipid fatty acid (PLFA) composition were investigated in grassland soils from the 'Park Grass Experiment', Rothamsted Research, UK. Bacterial growth decreased and fungal growth increased with lower pH, resulting in a 50-fold increase in the relative importance of fungi between pH 7.4 and 3.3. The PLFA-based fungal : bacterial biomass ratio was unchanged between pH 4.5 and 7.4, and decreased only below pH 4.5. Respiration and substrate-induced respiration biomass both decreased three- to fourfold with lower pH, but biomass concentrations estimated using PLFAs were unaffected by pH. N fertilization did not affect bacterial growth and marginally affected fungal growth while PLFA biomass marker concentrations were all reduced by higher N additions. Respiration decreased with higher N application, suggesting a reduced quality of the soil organic carbon. The PLFA composition was strongly affected by both pH and N. A comparison with a pH gradient in arable soil allowed us to generalize the pH effect between systems. There are 30-50-fold increases in the relative importance of fungi between high (7.4-8.3) and low (3.3-4.5) pH with concomitant reductions of respiration by 30-70%. (Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
phospholipids, microbial community structure, acetate in ergosterol incorporation, leucine incorporation into bacteria, soil acidity, mineralization
in
FEMS Microbiology Ecology
volume
76
pages
89 - 99
publisher
Oxford University Press
external identifiers
  • wos:000288075400008
  • scopus:79952362345
  • pmid:21223326
ISSN
1574-6941
DOI
10.1111/j.1574-6941.2010.01032.x
project
Effect of environmental factors on fungal and bacterial growth in soil
Microbial carbon-use efficiency
language
English
LU publication?
yes
id
ade0f9eb-16f3-4798-8609-102ba9000af5 (old id 1777616)
date added to LUP
2016-04-01 13:26:27
date last changed
2022-04-14 01:03:36
@article{ade0f9eb-16f3-4798-8609-102ba9000af5,
  abstract     = {{The effects of nitrogen (N) fertilization (0-150 kg N ha(-1) year(-1) since 1865) and pH (3.3-7.4) on fungal and bacterial growth, biomass and phospholipid fatty acid (PLFA) composition were investigated in grassland soils from the 'Park Grass Experiment', Rothamsted Research, UK. Bacterial growth decreased and fungal growth increased with lower pH, resulting in a 50-fold increase in the relative importance of fungi between pH 7.4 and 3.3. The PLFA-based fungal : bacterial biomass ratio was unchanged between pH 4.5 and 7.4, and decreased only below pH 4.5. Respiration and substrate-induced respiration biomass both decreased three- to fourfold with lower pH, but biomass concentrations estimated using PLFAs were unaffected by pH. N fertilization did not affect bacterial growth and marginally affected fungal growth while PLFA biomass marker concentrations were all reduced by higher N additions. Respiration decreased with higher N application, suggesting a reduced quality of the soil organic carbon. The PLFA composition was strongly affected by both pH and N. A comparison with a pH gradient in arable soil allowed us to generalize the pH effect between systems. There are 30-50-fold increases in the relative importance of fungi between high (7.4-8.3) and low (3.3-4.5) pH with concomitant reductions of respiration by 30-70%.}},
  author       = {{Rousk, Johannes and Brookes, Philip C and Bååth, Erland}},
  issn         = {{1574-6941}},
  keywords     = {{phospholipids; microbial community structure; acetate in ergosterol incorporation; leucine incorporation into bacteria; soil acidity; mineralization}},
  language     = {{eng}},
  pages        = {{89--99}},
  publisher    = {{Oxford University Press}},
  series       = {{FEMS Microbiology Ecology}},
  title        = {{Fungal and bacterial growth responses to N fertilization and pH in the 150-year 'Park Grass' UK grassland experiment.}},
  url          = {{http://dx.doi.org/10.1111/j.1574-6941.2010.01032.x}},
  doi          = {{10.1111/j.1574-6941.2010.01032.x}},
  volume       = {{76}},
  year         = {{2011}},
}