Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Linking genetic mechanisms of heterozygosity-fitness correlations to footprints of selection at single loci

Mueller, Jakob C. ; Hermisson, Joachim ; Olano-Marin, Juanita ; Hansson, Bengt LU orcid and Kempenaers, Bart (2011) In Evolutionary Ecology 25(1). p.1-11
Abstract
Investigations of heterozygosity-fitness correlations (HFCs) are central to the understanding how genetic diversity is maintained in natural populations. Advanced genome-wide approaches will enrich the number of functional loci to be tested. We argue that a combined analysis of the genetic mechanisms of HFCs and selection signals at single loci will allow researchers to better understand the micro-evolutionary basis of HFCs. Different dominance relationships among the alleles at the locus can lead to positive, negative or null HFCs depending on the allele frequency distribution. These scenarios differ in the temporal stability of the HFCs and in the patterns of allele frequency changes over time. Here, we describe a simple theoretical... (More)
Investigations of heterozygosity-fitness correlations (HFCs) are central to the understanding how genetic diversity is maintained in natural populations. Advanced genome-wide approaches will enrich the number of functional loci to be tested. We argue that a combined analysis of the genetic mechanisms of HFCs and selection signals at single loci will allow researchers to better understand the micro-evolutionary basis of HFCs. Different dominance relationships among the alleles at the locus can lead to positive, negative or null HFCs depending on the allele frequency distribution. These scenarios differ in the temporal stability of the HFCs and in the patterns of allele frequency changes over time. Here, we describe a simple theoretical framework that links the analyses of heterozygosity-fitness associations (ecological timescale) with tests for selection signals (evolutionary timescale). Different genomic footprints of selection can be expected for the different underlying genetic mechanisms of HFCs, and this information can be independently used for the classification of HFCs. We suggest that in addition to inbreeding and single-locus overdominant effects also loci under directional selection could play a significant role in the development of heterozygosity-fitness effects in large natural populations under recent or fluctuating ecological changes. (Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Allelic dominance, Recessiveness, Microevolution, Partial selective, sweep, Balancing selection, Fluctuating selection
in
Evolutionary Ecology
volume
25
issue
1
pages
1 - 11
publisher
Springer
external identifiers
  • wos:000287600500001
  • scopus:78650523085
ISSN
1573-8477
DOI
10.1007/s10682-010-9377-2
language
English
LU publication?
yes
id
19fc6176-dc2b-42d0-918e-da978d252fcf (old id 1872967)
date added to LUP
2016-04-01 13:52:17
date last changed
2022-02-11 23:32:45
@article{19fc6176-dc2b-42d0-918e-da978d252fcf,
  abstract     = {{Investigations of heterozygosity-fitness correlations (HFCs) are central to the understanding how genetic diversity is maintained in natural populations. Advanced genome-wide approaches will enrich the number of functional loci to be tested. We argue that a combined analysis of the genetic mechanisms of HFCs and selection signals at single loci will allow researchers to better understand the micro-evolutionary basis of HFCs. Different dominance relationships among the alleles at the locus can lead to positive, negative or null HFCs depending on the allele frequency distribution. These scenarios differ in the temporal stability of the HFCs and in the patterns of allele frequency changes over time. Here, we describe a simple theoretical framework that links the analyses of heterozygosity-fitness associations (ecological timescale) with tests for selection signals (evolutionary timescale). Different genomic footprints of selection can be expected for the different underlying genetic mechanisms of HFCs, and this information can be independently used for the classification of HFCs. We suggest that in addition to inbreeding and single-locus overdominant effects also loci under directional selection could play a significant role in the development of heterozygosity-fitness effects in large natural populations under recent or fluctuating ecological changes.}},
  author       = {{Mueller, Jakob C. and Hermisson, Joachim and Olano-Marin, Juanita and Hansson, Bengt and Kempenaers, Bart}},
  issn         = {{1573-8477}},
  keywords     = {{Allelic dominance; Recessiveness; Microevolution; Partial selective; sweep; Balancing selection; Fluctuating selection}},
  language     = {{eng}},
  number       = {{1}},
  pages        = {{1--11}},
  publisher    = {{Springer}},
  series       = {{Evolutionary Ecology}},
  title        = {{Linking genetic mechanisms of heterozygosity-fitness correlations to footprints of selection at single loci}},
  url          = {{http://dx.doi.org/10.1007/s10682-010-9377-2}},
  doi          = {{10.1007/s10682-010-9377-2}},
  volume       = {{25}},
  year         = {{2011}},
}