Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Size and orientation of polar nanoregions characterized by PDF analysis and using a statistical model in a Bi(Mg1/2Ti1/2)O3-PbTiO3 ferroelectric re-entrant relaxor

Liu, Laijun ; Chen, Kaiyuan ; Wang, Dawei ; Hinterstein, Manuel ; Hansen, Anna Lena ; Knapp, Michael ; Peng, Biaolin ; Xing, Xianran ; Zhang, Yuanpeng and Kong, Jing , et al. (2024) In Journal of Materials Chemistry A
Abstract

Revealing the local structure information of relaxor ferroelectrics is necessary for a clear understanding of their structure-property relationships, especially the determination of the size of polar nanoregions (PNRs), which is still a long-standing challenge. In this work, the local structure of the pseudo-cubic solid solutions 0.60Bi(Mg1/2Ti1/2)O3-0.40PbTiO3 and 0.65Bi(Mg1/2Ti1/2)O3-0.35PbTiO3, which exhibit re-entrant relaxor behavior, has been determined using the statistical model and reverse Monte Carlo (RMC) modelling of total scattering data. The pair distribution function revealed significant deviation between the local and long-range... (More)

Revealing the local structure information of relaxor ferroelectrics is necessary for a clear understanding of their structure-property relationships, especially the determination of the size of polar nanoregions (PNRs), which is still a long-standing challenge. In this work, the local structure of the pseudo-cubic solid solutions 0.60Bi(Mg1/2Ti1/2)O3-0.40PbTiO3 and 0.65Bi(Mg1/2Ti1/2)O3-0.35PbTiO3, which exhibit re-entrant relaxor behavior, has been determined using the statistical model and reverse Monte Carlo (RMC) modelling of total scattering data. The pair distribution function revealed significant deviation between the local and long-range structures with each of the cations exhibiting unique polyhedral configurations, which required the use of a phase coexistence model to characterize the local structure. The lone-pair bearing Bi and Pb cations exhibited the greatest amount of displacement and disordering. An effective method was proposed to determine the size and orientation of PNRs (~2 nm) based on the correlation angle between displaced A-site pairs. The size of these regions below freezing temperature is in agreement with the result of the statistical model. This method is suitable for relaxor systems, which lack long-range ferroelectric order, providing an excellent characterization of PNRs and an understanding of the physical properties of relaxor ferroelectrics.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; and (Less)
publishing date
type
Contribution to journal
publication status
in press
subject
in
Journal of Materials Chemistry A
publisher
Royal Society of Chemistry
external identifiers
  • scopus:85190722037
ISSN
2050-7488
DOI
10.1039/d4ta00240g
language
English
LU publication?
no
id
1960cc2d-1f0c-43fa-a8e8-3d773f7368bb
date added to LUP
2024-04-29 08:36:24
date last changed
2024-04-29 08:36:56
@article{1960cc2d-1f0c-43fa-a8e8-3d773f7368bb,
  abstract     = {{<p>Revealing the local structure information of relaxor ferroelectrics is necessary for a clear understanding of their structure-property relationships, especially the determination of the size of polar nanoregions (PNRs), which is still a long-standing challenge. In this work, the local structure of the pseudo-cubic solid solutions 0.60Bi(Mg<sub>1/2</sub>Ti<sub>1/2</sub>)O<sub>3</sub>-0.40PbTiO<sub>3</sub> and 0.65Bi(Mg<sub>1/2</sub>Ti<sub>1/2</sub>)O<sub>3</sub>-0.35PbTiO<sub>3</sub>, which exhibit re-entrant relaxor behavior, has been determined using the statistical model and reverse Monte Carlo (RMC) modelling of total scattering data. The pair distribution function revealed significant deviation between the local and long-range structures with each of the cations exhibiting unique polyhedral configurations, which required the use of a phase coexistence model to characterize the local structure. The lone-pair bearing Bi and Pb cations exhibited the greatest amount of displacement and disordering. An effective method was proposed to determine the size and orientation of PNRs (~2 nm) based on the correlation angle between displaced A-site pairs. The size of these regions below freezing temperature is in agreement with the result of the statistical model. This method is suitable for relaxor systems, which lack long-range ferroelectric order, providing an excellent characterization of PNRs and an understanding of the physical properties of relaxor ferroelectrics.</p>}},
  author       = {{Liu, Laijun and Chen, Kaiyuan and Wang, Dawei and Hinterstein, Manuel and Hansen, Anna Lena and Knapp, Michael and Peng, Biaolin and Xing, Xianran and Zhang, Yuanpeng and Kong, Jing and Pramanick, Abhijit and Vogel Jørgensen, Mads Ry and Marlton, Frederick}},
  issn         = {{2050-7488}},
  language     = {{eng}},
  publisher    = {{Royal Society of Chemistry}},
  series       = {{Journal of Materials Chemistry A}},
  title        = {{Size and orientation of polar nanoregions characterized by PDF analysis and using a statistical model in a Bi(Mg<sub>1/2</sub>Ti<sub>1/2</sub>)O<sub>3</sub>-PbTiO<sub>3</sub> ferroelectric re-entrant relaxor}},
  url          = {{http://dx.doi.org/10.1039/d4ta00240g}},
  doi          = {{10.1039/d4ta00240g}},
  year         = {{2024}},
}