Advanced

Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes

Svensson, Tomas LU ; Adolfsson, E.; Burresi, M.; Savo, R.; Xu, Can LU ; Wiersma, D. S. and Svanberg, Sune LU (2013) In Applied Physics B 110(2). p.147-154
Abstract
Wall collision broadening of absorption lines of gases confined in porous media is a recently opened domain of high-resolution spectroscopy. Here, we present an experimental investigation of its application for pore size assessment. We report on the manufacturing of nanoporous zirconia ceramics with well-defined pore sizes fine-tuned from 50 to 150 nm. The resulting pore structure is characterized using mercury intrusion porosimetry, and the optical properties of these strongly scattering materials are measured using femtosecond photon time-of-flight spectroscopy (transport mean free paths found to be tuned from 2.3 to 1.2 mu m as the pore size increase). Wall collision line broadening is studied by performing near-infrared (760 nm)... (More)
Wall collision broadening of absorption lines of gases confined in porous media is a recently opened domain of high-resolution spectroscopy. Here, we present an experimental investigation of its application for pore size assessment. We report on the manufacturing of nanoporous zirconia ceramics with well-defined pore sizes fine-tuned from 50 to 150 nm. The resulting pore structure is characterized using mercury intrusion porosimetry, and the optical properties of these strongly scattering materials are measured using femtosecond photon time-of-flight spectroscopy (transport mean free paths found to be tuned from 2.3 to 1.2 mu m as the pore size increase). Wall collision line broadening is studied by performing near-infrared (760 nm) high-resolution diode laser spectroscopy of confined oxygen molecules. A simple method for quantitative estimation of the pore size is outlined and shown to produce results in agreement with mercury intrusion porosimetry. At the same time, the need for improved understanding of wall collision broadening is emphasized. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Applied Physics B
volume
110
issue
2
pages
147 - 154
publisher
Springer
external identifiers
  • wos:000315486900003
  • scopus:84883490461
ISSN
0946-2171
DOI
10.1007/s00340-012-5011-z
language
English
LU publication?
yes
id
1b014b99-0c20-4521-a2b8-701f4525adbd (old id 3671257)
date added to LUP
2013-04-23 13:34:20
date last changed
2019-08-18 03:15:45
@article{1b014b99-0c20-4521-a2b8-701f4525adbd,
  abstract     = {Wall collision broadening of absorption lines of gases confined in porous media is a recently opened domain of high-resolution spectroscopy. Here, we present an experimental investigation of its application for pore size assessment. We report on the manufacturing of nanoporous zirconia ceramics with well-defined pore sizes fine-tuned from 50 to 150 nm. The resulting pore structure is characterized using mercury intrusion porosimetry, and the optical properties of these strongly scattering materials are measured using femtosecond photon time-of-flight spectroscopy (transport mean free paths found to be tuned from 2.3 to 1.2 mu m as the pore size increase). Wall collision line broadening is studied by performing near-infrared (760 nm) high-resolution diode laser spectroscopy of confined oxygen molecules. A simple method for quantitative estimation of the pore size is outlined and shown to produce results in agreement with mercury intrusion porosimetry. At the same time, the need for improved understanding of wall collision broadening is emphasized.},
  author       = {Svensson, Tomas and Adolfsson, E. and Burresi, M. and Savo, R. and Xu, Can and Wiersma, D. S. and Svanberg, Sune},
  issn         = {0946-2171},
  language     = {eng},
  number       = {2},
  pages        = {147--154},
  publisher    = {Springer},
  series       = {Applied Physics B},
  title        = {Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes},
  url          = {http://dx.doi.org/10.1007/s00340-012-5011-z},
  volume       = {110},
  year         = {2013},
}