Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Spectroscopy of the superconducting proximity effect in nanowires using integrated quantum dots

Jünger, Christian ; Baumgartner, Andreas ; Delagrange, Raphaëlle ; Chevallier, Denis ; Lehmann, Sebastian LU ; Nilsson, Malin LU ; Dick, Kimberly A. LU ; Thelander, Claes LU and Schönenberger, Christian (2019) In Communications Physics 2(1).
Abstract

The superconducting proximity effect has recently attracted a renewed interest as the basis of topologically nontrivial states in materials with a large spin–orbit interaction, with protected boundary states useful for quantum information technologies. However, spectroscopy of these states is challenging because of the limited control of conventional tunnel barriers. Here we report electronic spectroscopy measurements of the proximity gap in a semiconducting indium arsenide nanowire segment coupled to a superconductor, using quantum dots formed deterministically during the crystal growth. We extract characteristic parameters describing the proximity gap, which is suppressed for lower electron densities and fully developed for larger... (More)

The superconducting proximity effect has recently attracted a renewed interest as the basis of topologically nontrivial states in materials with a large spin–orbit interaction, with protected boundary states useful for quantum information technologies. However, spectroscopy of these states is challenging because of the limited control of conventional tunnel barriers. Here we report electronic spectroscopy measurements of the proximity gap in a semiconducting indium arsenide nanowire segment coupled to a superconductor, using quantum dots formed deterministically during the crystal growth. We extract characteristic parameters describing the proximity gap, which is suppressed for lower electron densities and fully developed for larger ones. This gate-tunable transition of the proximity effect can be understood as a transition from the long to the short junction regime of subgap bound states in the NW segment. Our device architecture opens up the way to systematic, quantitative spectroscopy studies of subgap states, such as Majorana-bound states.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Communications Physics
volume
2
issue
1
article number
76
publisher
Nature Publishing Group
external identifiers
  • scopus:85071161125
ISSN
2399-3650
DOI
10.1038/s42005-019-0162-4
language
English
LU publication?
yes
id
1b1a1f92-cc8c-46aa-affe-aea7e29aae68
date added to LUP
2019-09-09 08:55:52
date last changed
2023-11-19 14:22:17
@article{1b1a1f92-cc8c-46aa-affe-aea7e29aae68,
  abstract     = {{<p>The superconducting proximity effect has recently attracted a renewed interest as the basis of topologically nontrivial states in materials with a large spin–orbit interaction, with protected boundary states useful for quantum information technologies. However, spectroscopy of these states is challenging because of the limited control of conventional tunnel barriers. Here we report electronic spectroscopy measurements of the proximity gap in a semiconducting indium arsenide nanowire segment coupled to a superconductor, using quantum dots formed deterministically during the crystal growth. We extract characteristic parameters describing the proximity gap, which is suppressed for lower electron densities and fully developed for larger ones. This gate-tunable transition of the proximity effect can be understood as a transition from the long to the short junction regime of subgap bound states in the NW segment. Our device architecture opens up the way to systematic, quantitative spectroscopy studies of subgap states, such as Majorana-bound states.</p>}},
  author       = {{Jünger, Christian and Baumgartner, Andreas and Delagrange, Raphaëlle and Chevallier, Denis and Lehmann, Sebastian and Nilsson, Malin and Dick, Kimberly A. and Thelander, Claes and Schönenberger, Christian}},
  issn         = {{2399-3650}},
  language     = {{eng}},
  number       = {{1}},
  publisher    = {{Nature Publishing Group}},
  series       = {{Communications Physics}},
  title        = {{Spectroscopy of the superconducting proximity effect in nanowires using integrated quantum dots}},
  url          = {{http://dx.doi.org/10.1038/s42005-019-0162-4}},
  doi          = {{10.1038/s42005-019-0162-4}},
  volume       = {{2}},
  year         = {{2019}},
}