Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Partial overlap of fungal communities associated with nettle and poplar roots when co-occurring at a trace metal contaminated site

Yung, Loïc ; Bertheau, Coralie ; Tafforeau, Flavien ; Zappelini, Cyril ; Valot, Benoit ; Maillard, François LU ; Selosse, Marc André ; Viotti, Chloé ; Binet, Philippe and Chiapusio, Geneviève , et al. (2021) In Science of the Total Environment 782.
Abstract

Stinging nettle (Urtica dioica L.) raises growing interest in phytomanagement because it commonly grows under poplar Short Rotation Coppices (SRC) set up at trace-metal (TM) contaminated sites and provides high-quality herbaceous fibres. The mycobiome of this non-mycorhizal plant and its capacity to adapt to TM-contaminated environments remains unknown. This study aimed at characterizing the mycobiome associated with nettle and poplar roots co-occurring at a TM-contaminated site. Plant root barcoding using the fungi-specific ITS1F-ITS2 primers and Illumina MiSeq technology revealed that nettle and poplar had distinct root fungal communities. The nettle mycobiome was dominated by Pezizomycetes from known endophytic taxa and from the... (More)

Stinging nettle (Urtica dioica L.) raises growing interest in phytomanagement because it commonly grows under poplar Short Rotation Coppices (SRC) set up at trace-metal (TM) contaminated sites and provides high-quality herbaceous fibres. The mycobiome of this non-mycorhizal plant and its capacity to adapt to TM-contaminated environments remains unknown. This study aimed at characterizing the mycobiome associated with nettle and poplar roots co-occurring at a TM-contaminated site. Plant root barcoding using the fungi-specific ITS1F-ITS2 primers and Illumina MiSeq technology revealed that nettle and poplar had distinct root fungal communities. The nettle mycobiome was dominated by Pezizomycetes from known endophytic taxa and from the supposedly saprotrophic genus Kotlabaea (which was the most abundant). Several ectomycorrhizal fungi such as Inocybe (Agaricomycetes) and Tuber (Pezizomycetes) species were associated with the poplar roots. Most of the Pezizomycetes taxa were present in the highly TM-contaminated area whereas Agaricomycetes tended to be reduced. Despite being a known non-mycorrhizal plant, nettle was associated with a significant proportion of ectomycorrhizal OTU (9.7%), suggesting some connexions between the poplar and the nettle root mycobiomes. Finally, our study raised the interest in reconsidering the fungal networking beyond known mycorrhizal interactions.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; and (Less)
publishing date
type
Contribution to journal
publication status
published
keywords
Ectomycorrhizal fungi, Environmental metabarcoding, Fungal network, Metal-enriched sediments, Phytomanagement, Root-associated mycobiome, Urtica dioica L.
in
Science of the Total Environment
volume
782
article number
146692
publisher
Elsevier
external identifiers
  • scopus:85103752850
  • pmid:33838361
ISSN
0048-9697
DOI
10.1016/j.scitotenv.2021.146692
language
English
LU publication?
no
additional info
Publisher Copyright: © 2021 Elsevier B.V.
id
1b7d885e-bab9-4714-96e4-557751e41791
date added to LUP
2024-06-02 15:06:24
date last changed
2024-06-16 15:47:14
@article{1b7d885e-bab9-4714-96e4-557751e41791,
  abstract     = {{<p>Stinging nettle (Urtica dioica L.) raises growing interest in phytomanagement because it commonly grows under poplar Short Rotation Coppices (SRC) set up at trace-metal (TM) contaminated sites and provides high-quality herbaceous fibres. The mycobiome of this non-mycorhizal plant and its capacity to adapt to TM-contaminated environments remains unknown. This study aimed at characterizing the mycobiome associated with nettle and poplar roots co-occurring at a TM-contaminated site. Plant root barcoding using the fungi-specific ITS1F-ITS2 primers and Illumina MiSeq technology revealed that nettle and poplar had distinct root fungal communities. The nettle mycobiome was dominated by Pezizomycetes from known endophytic taxa and from the supposedly saprotrophic genus Kotlabaea (which was the most abundant). Several ectomycorrhizal fungi such as Inocybe (Agaricomycetes) and Tuber (Pezizomycetes) species were associated with the poplar roots. Most of the Pezizomycetes taxa were present in the highly TM-contaminated area whereas Agaricomycetes tended to be reduced. Despite being a known non-mycorrhizal plant, nettle was associated with a significant proportion of ectomycorrhizal OTU (9.7%), suggesting some connexions between the poplar and the nettle root mycobiomes. Finally, our study raised the interest in reconsidering the fungal networking beyond known mycorrhizal interactions.</p>}},
  author       = {{Yung, Loïc and Bertheau, Coralie and Tafforeau, Flavien and Zappelini, Cyril and Valot, Benoit and Maillard, François and Selosse, Marc André and Viotti, Chloé and Binet, Philippe and Chiapusio, Geneviève and Chalot, Michel}},
  issn         = {{0048-9697}},
  keywords     = {{Ectomycorrhizal fungi; Environmental metabarcoding; Fungal network; Metal-enriched sediments; Phytomanagement; Root-associated mycobiome; Urtica dioica L.}},
  language     = {{eng}},
  month        = {{08}},
  publisher    = {{Elsevier}},
  series       = {{Science of the Total Environment}},
  title        = {{Partial overlap of fungal communities associated with nettle and poplar roots when co-occurring at a trace metal contaminated site}},
  url          = {{http://dx.doi.org/10.1016/j.scitotenv.2021.146692}},
  doi          = {{10.1016/j.scitotenv.2021.146692}},
  volume       = {{782}},
  year         = {{2021}},
}