Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Migration Routes and Strategies in a Highly Aerial Migrant, the Common Swift Apus apus, Revealed by Light-Level Geolocators.

Åkesson, Susanne LU ; Klaassen, Raymond LU ; Holmgren, Jan ; Fox, James W and Hedenström, Anders LU (2012) In PLoS ONE 7(7).
Abstract
The tracking of small avian migrants has only recently become possible by the use of small light-level geolocators, allowing the reconstruction of whole migration routes, as well as timing and speed of migration and identification of wintering areas. Such information is crucial for evaluating theories about migration strategies and pinpointing critical areas for migrants of potential conservation value. Here we report data about migration in the common swift, a highly aerial and long-distance migrating species for which only limited information based on ringing recoveries about migration routes and wintering areas is available. Six individuals were successfully tracked throughout a complete migration cycle from Sweden to Africa and back.... (More)
The tracking of small avian migrants has only recently become possible by the use of small light-level geolocators, allowing the reconstruction of whole migration routes, as well as timing and speed of migration and identification of wintering areas. Such information is crucial for evaluating theories about migration strategies and pinpointing critical areas for migrants of potential conservation value. Here we report data about migration in the common swift, a highly aerial and long-distance migrating species for which only limited information based on ringing recoveries about migration routes and wintering areas is available. Six individuals were successfully tracked throughout a complete migration cycle from Sweden to Africa and back. The autumn migration followed a similar route in all individuals, with an initial southward movement through Europe followed by a more southwest-bound course through Western Sahara to Sub-Saharan stopovers, before a south-eastward approach to the final wintering areas in the Congo basin. After approximately six months at wintering sites, which shifted in three of the individuals, spring migration commenced in late April towards a restricted stopover area in West Africa in all but one individual that migrated directly towards north from the wintering area. The first part of spring migration involved a crossing of the Gulf of Guinea in those individuals that visited West Africa. Spring migration was generally wind assisted within Africa, while through Europe variable or head winds were encountered. The average detour at about 50% could be explained by the existence of key feeding sites and wind patterns. The common swift adopts a mixed fly-and-forage strategy, facilitated by its favourable aerodynamic design allowing for efficient use of fuel. This strategy allowed swifts to reach average migration speeds well above 300 km/day in spring, which is higher than possible for similar sized passerines. This study demonstrates that new technology may drastically change our views about migration routes and strategies in small birds, as well as showing the unexpected use of very limited geographical areas during migration that may have important consequences for conservation strategies for migrants. (Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
PLoS ONE
volume
7
issue
7
article number
e41195
publisher
Public Library of Science (PLoS)
external identifiers
  • wos:000306548900096
  • pmid:22815968
  • scopus:84864007382
  • pmid:22815968
ISSN
1932-6203
DOI
10.1371/journal.pone.0041195
language
English
LU publication?
yes
id
1cc491b1-1fa2-42cd-ae66-6cbb4a5390b1 (old id 2966851)
date added to LUP
2016-04-01 13:02:06
date last changed
2024-05-08 03:31:54
@article{1cc491b1-1fa2-42cd-ae66-6cbb4a5390b1,
  abstract     = {{The tracking of small avian migrants has only recently become possible by the use of small light-level geolocators, allowing the reconstruction of whole migration routes, as well as timing and speed of migration and identification of wintering areas. Such information is crucial for evaluating theories about migration strategies and pinpointing critical areas for migrants of potential conservation value. Here we report data about migration in the common swift, a highly aerial and long-distance migrating species for which only limited information based on ringing recoveries about migration routes and wintering areas is available. Six individuals were successfully tracked throughout a complete migration cycle from Sweden to Africa and back. The autumn migration followed a similar route in all individuals, with an initial southward movement through Europe followed by a more southwest-bound course through Western Sahara to Sub-Saharan stopovers, before a south-eastward approach to the final wintering areas in the Congo basin. After approximately six months at wintering sites, which shifted in three of the individuals, spring migration commenced in late April towards a restricted stopover area in West Africa in all but one individual that migrated directly towards north from the wintering area. The first part of spring migration involved a crossing of the Gulf of Guinea in those individuals that visited West Africa. Spring migration was generally wind assisted within Africa, while through Europe variable or head winds were encountered. The average detour at about 50% could be explained by the existence of key feeding sites and wind patterns. The common swift adopts a mixed fly-and-forage strategy, facilitated by its favourable aerodynamic design allowing for efficient use of fuel. This strategy allowed swifts to reach average migration speeds well above 300 km/day in spring, which is higher than possible for similar sized passerines. This study demonstrates that new technology may drastically change our views about migration routes and strategies in small birds, as well as showing the unexpected use of very limited geographical areas during migration that may have important consequences for conservation strategies for migrants.}},
  author       = {{Åkesson, Susanne and Klaassen, Raymond and Holmgren, Jan and Fox, James W and Hedenström, Anders}},
  issn         = {{1932-6203}},
  language     = {{eng}},
  number       = {{7}},
  publisher    = {{Public Library of Science (PLoS)}},
  series       = {{PLoS ONE}},
  title        = {{Migration Routes and Strategies in a Highly Aerial Migrant, the Common Swift Apus apus, Revealed by Light-Level Geolocators.}},
  url          = {{http://dx.doi.org/10.1371/journal.pone.0041195}},
  doi          = {{10.1371/journal.pone.0041195}},
  volume       = {{7}},
  year         = {{2012}},
}