Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Quantitative powder diffraction using a (2 + 3) surface diffractometer and an area detector

Abbondanza, Giuseppe LU ; Larsson, Alfred LU ; Carlá, Francesco ; Lundgren, Edvin LU and Harlow, Gary S. LU (2021) In Journal of Applied Crystallography 54(4). p.1140-1152
Abstract
X-ray diffractometers primarily designed for surface X-ray diffraction are often used to measure the diffraction from powders, textured materials and fiber-texture samples in 2θ scans. Unlike in high-energy powder diffraction, only a fraction of the powder rings is typically measured, and the data consist of many detector images across the 2θ range. Such diffractometers typically scan in directions not possible on a conventional laboratory diffractometer, which gives enhanced control of the scattering vector relative to the sample orientation. There are, however, very few examples where the measured intensity is directly used, such as for profile/Rietveld refinement, as is common with other powder diffraction data. Although the underlying... (More)
X-ray diffractometers primarily designed for surface X-ray diffraction are often used to measure the diffraction from powders, textured materials and fiber-texture samples in 2θ scans. Unlike in high-energy powder diffraction, only a fraction of the powder rings is typically measured, and the data consist of many detector images across the 2θ range. Such diffractometers typically scan in directions not possible on a conventional laboratory diffractometer, which gives enhanced control of the scattering vector relative to the sample orientation. There are, however, very few examples where the measured intensity is directly used, such as for profile/Rietveld refinement, as is common with other powder diffraction data. Although the underlying physics is known, converting the data is time consuming and the appropriate corrections are dispersed across several publications, often not with powder diffraction in mind. This paper presents the angle calculations and correction factors required to calculate meaningful intensities for 2θ scans with a (2 + 3)-type diffractometer and an area detector. Some of the limitations with respect to texture, refraction and instrumental resolution are also discussed, as is the kind of information that one can hope to obtain. (Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Powder diffraction, Rietveld refinement, Angle calculations, Grazing incidence, Area detectors
in
Journal of Applied Crystallography
volume
54
issue
4
pages
13 pages
publisher
International Union of Crystallography
external identifiers
  • pmid:34429722
  • scopus:85120951613
ISSN
1600-5767
DOI
10.1107/S1600576721006245
language
English
LU publication?
yes
id
1e6654ce-c4f7-4163-864d-08f3d27b3d90
alternative location
https://scripts.iucr.org/cgi-bin/paper?S1600576721006245
date added to LUP
2021-08-30 09:16:31
date last changed
2023-11-08 18:21:17
@article{1e6654ce-c4f7-4163-864d-08f3d27b3d90,
  abstract     = {{X-ray diffractometers primarily designed for surface X-ray diffraction are often used to measure the diffraction from powders, textured materials and fiber-texture samples in 2θ scans. Unlike in high-energy powder diffraction, only a fraction of the powder rings is typically measured, and the data consist of many detector images across the 2θ range. Such diffractometers typically scan in directions not possible on a conventional laboratory diffractometer, which gives enhanced control of the scattering vector relative to the sample orientation. There are, however, very few examples where the measured intensity is directly used, such as for profile/Rietveld refinement, as is common with other powder diffraction data. Although the underlying physics is known, converting the data is time consuming and the appropriate corrections are dispersed across several publications, often not with powder diffraction in mind. This paper presents the angle calculations and correction factors required to calculate meaningful intensities for 2θ scans with a (2 + 3)-type diffractometer and an area detector. Some of the limitations with respect to texture, refraction and instrumental resolution are also discussed, as is the kind of information that one can hope to obtain.}},
  author       = {{Abbondanza, Giuseppe and Larsson, Alfred and Carlá, Francesco and Lundgren, Edvin and Harlow, Gary S.}},
  issn         = {{1600-5767}},
  keywords     = {{Powder diffraction; Rietveld refinement; Angle calculations; Grazing incidence; Area detectors}},
  language     = {{eng}},
  month        = {{08}},
  number       = {{4}},
  pages        = {{1140--1152}},
  publisher    = {{International Union of Crystallography}},
  series       = {{Journal of Applied Crystallography}},
  title        = {{Quantitative powder diffraction using a (2 + 3) surface diffractometer and an area detector}},
  url          = {{http://dx.doi.org/10.1107/S1600576721006245}},
  doi          = {{10.1107/S1600576721006245}},
  volume       = {{54}},
  year         = {{2021}},
}