Recurrence and transience of Rademacher series
(2023) In Alea (Rio de Janeiro) 20(1). p.33-51- Abstract
- We introduce the notion of a-walk S(n) = a1X1 +… + anXn, based on a sequence of positive numbers a = (a1, a2,…) and a Rademacher sequence X1,X2,…. We study recurrence/ transience (properly defined) of such walks for various sequences of a. 
    Please use this url to cite or link to this publication:
    https://lup.lub.lu.se/record/21198c24-0365-4fc8-8ff0-680121e99345
- author
- 						Bhattacharya, Satyaki
				LU
	 and 						Volkov, Stanislav
				LU
				  
- organization
- publishing date
- 2023
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- non-homogeneous Markov chains, Rademacher distribution, Recurrence, transience
- in
- Alea (Rio de Janeiro)
- volume
- 20
- issue
- 1
- pages
- 19 pages
- publisher
- Instituto Nacional de Matematica Pura e Aplicada
- external identifiers
- 
                - scopus:85149705179
 
- ISSN
- 1980-0436
- DOI
- 10.30757/ALEA.v20-03
- language
- English
- LU publication?
- yes
- id
- 21198c24-0365-4fc8-8ff0-680121e99345
- date added to LUP
- 2023-04-03 11:06:45
- date last changed
- 2025-10-14 09:43:40
@article{21198c24-0365-4fc8-8ff0-680121e99345,
  abstract     = {{<p>We introduce the notion of a-walk S(n) = a<sub>1</sub>X<sub>1</sub> +… + a<sub>n</sub>X<sub>n</sub>, based on a sequence of positive numbers a = (a<sub>1</sub>, a<sub>2</sub>,…) and a Rademacher sequence X<sub>1</sub>,X<sub>2</sub>,…. We study recurrence/ transience (properly defined) of such walks for various sequences of a.</p>}},
  author       = {{Bhattacharya, Satyaki and Volkov, Stanislav}},
  issn         = {{1980-0436}},
  keywords     = {{non-homogeneous Markov chains; Rademacher distribution; Recurrence; transience}},
  language     = {{eng}},
  number       = {{1}},
  pages        = {{33--51}},
  publisher    = {{Instituto Nacional de Matematica Pura e Aplicada}},
  series       = {{Alea (Rio de Janeiro)}},
  title        = {{Recurrence and transience of Rademacher series}},
  url          = {{http://dx.doi.org/10.30757/ALEA.v20-03}},
  doi          = {{10.30757/ALEA.v20-03}},
  volume       = {{20}},
  year         = {{2023}},
}