Advanced

Hankel Forms and Embedding Theorems in Weighted Dirichlet Spaces

Aleman, Alexandru LU and Perfekt, Karl-Mikael LU (2011) In International Mathematics Research Notices
Abstract
We show that for a fixed operator-valued analytic function $g$ the boundedness of the bilinear (Hankel-type) form

$(f,h)\to\int_\D\trace{g'^*fh'}(1-|z|^2)^\alpha \, \ud A$,

defined on appropriate cartesian products of dual weighted Dirichlet spaces of Schatten class-valued functions, is equivalent to corresponding Carleson embedding estimates.
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Hankel, Operator Theory, Complex Analysis, Carleson Embedding, Vector-valued
in
International Mathematics Research Notices
publisher
Oxford University Press
external identifiers
  • wos:000309463000005
  • scopus:84866889131
ISSN
1073-7928
DOI
10.1093/imrn/rnr195
language
English
LU publication?
yes
id
cca3a3ad-978d-4aa4-95c9-f35bc55b0226 (old id 2199951)
alternative location
http://imrn.oxfordjournals.org/cgi/content/abstract/rnr195?ijkey=j0x4Ai5Fm6QVhRJ&keytype=ref
date added to LUP
2011-12-29 18:22:50
date last changed
2017-04-09 03:15:33
@article{cca3a3ad-978d-4aa4-95c9-f35bc55b0226,
  abstract     = {We show that for a fixed operator-valued analytic function $g$ the boundedness of the bilinear (Hankel-type) form <br/><br>
$(f,h)\to\int_\D\trace{g'^*fh'}(1-|z|^2)^\alpha \, \ud A$,<br/><br>
defined on appropriate cartesian products of dual weighted Dirichlet spaces of Schatten class-valued functions, is equivalent to corresponding Carleson embedding estimates.},
  author       = {Aleman, Alexandru and Perfekt, Karl-Mikael},
  issn         = {1073-7928},
  keyword      = {Hankel,Operator Theory,Complex Analysis,Carleson Embedding,Vector-valued},
  language     = {eng},
  publisher    = {Oxford University Press},
  series       = {International Mathematics Research Notices},
  title        = {Hankel Forms and Embedding Theorems in Weighted Dirichlet Spaces},
  url          = {http://dx.doi.org/10.1093/imrn/rnr195},
  year         = {2011},
}