Advanced

High-precision dating and correlation of ice, marine and terrestrial sequences spanning Heinrich Event 3 : Testing mechanisms of interhemispheric change using New Zealand ancient kauri (Agathis australis)

Turney, Chris S M; Palmer, Jonathan; Bronk Ramsey, Christopher; Adolphi, Florian LU ; Muscheler, Raimund LU ; Hughen, Konrad A.; Staff, Richard A.; Jones, Richard T.; Thomas, Zoë A. and Fogwill, Christopher J., et al. (2016) In Quaternary Science Reviews 137. p.126-134
Abstract

Robustly testing hypotheses of geographic synchroneity of abrupt and extreme change during the late Pleistocene (60,000 to 11,650 years ago) requires a level of chronological precision often lacking in ice, marine and terrestrial sequences. Here we report a bidecadally-resolved New Zealand kauri (Agathis australis) tree-ring sequence spanning two millennia that preserves a record of atmospheric radiocarbon (14C) during ice-rafted debris event Heinrich Event 3 (HE3) in the North Atlantic and Antarctic Isotope Maximum 4 (AIM4) in the Southern Hemisphere. Using 14C in the marine Cariaco Basin and 10Be preserved in Greenland ice, the kauri 14C sequence allows us to precisely align sequences across... (More)

Robustly testing hypotheses of geographic synchroneity of abrupt and extreme change during the late Pleistocene (60,000 to 11,650 years ago) requires a level of chronological precision often lacking in ice, marine and terrestrial sequences. Here we report a bidecadally-resolved New Zealand kauri (Agathis australis) tree-ring sequence spanning two millennia that preserves a record of atmospheric radiocarbon (14C) during ice-rafted debris event Heinrich Event 3 (HE3) in the North Atlantic and Antarctic Isotope Maximum 4 (AIM4) in the Southern Hemisphere. Using 14C in the marine Cariaco Basin and 10Be preserved in Greenland ice, the kauri 14C sequence allows us to precisely align sequences across this period. We observe no significant difference between atmospheric and marine 14C records during HE3, suggesting no stratification of surface waters and collapse in Atlantic Meridional Overturning Circulation (AMOC). Instead our results support recent evidence for a weakened AMOC across at least two millennia of the glacial period. Our work adds to a growing body of literature confirming that Heinrich events are not the cause of stadial cooling and suggests changes in the AMOC were not the primary driver of antiphase temperature trends between the hemispheres. Decadally-resolved 14C in ancient kauri offers a powerful new (and complementary) approach to polar ice core CH4 alignment for testing hypotheses of abrupt and extreme climate change.

(Less)
Please use this url to cite or link to this publication:
author
, et al. (More)
(Less)
organization
publishing date
type
Contribution to journal
publication status
published
keywords
Abrupt climate change, Antarctic Isotope Maximum-4 (AIM4), Atmospheric radiocarbon (C), Bipolar seesaw, Extreme events, Heinrich-3 (H3), Tree-ring
in
Quaternary Science Reviews
volume
137
pages
9 pages
publisher
Elsevier
external identifiers
  • scopus:84958984750
  • wos:000373547100010
ISSN
0277-3791
DOI
10.1016/j.quascirev.2016.02.005
language
English
LU publication?
yes
id
222e4578-e102-4986-aef7-d35f7ece9f9d
date added to LUP
2016-05-20 14:49:34
date last changed
2017-01-29 04:30:09
@article{222e4578-e102-4986-aef7-d35f7ece9f9d,
  abstract     = {<p>Robustly testing hypotheses of geographic synchroneity of abrupt and extreme change during the late Pleistocene (60,000 to 11,650 years ago) requires a level of chronological precision often lacking in ice, marine and terrestrial sequences. Here we report a bidecadally-resolved New Zealand kauri (Agathis australis) tree-ring sequence spanning two millennia that preserves a record of atmospheric radiocarbon (<sup>14</sup>C) during ice-rafted debris event Heinrich Event 3 (HE3) in the North Atlantic and Antarctic Isotope Maximum 4 (AIM4) in the Southern Hemisphere. Using <sup>14</sup>C in the marine Cariaco Basin and <sup>10</sup>Be preserved in Greenland ice, the kauri <sup>14</sup>C sequence allows us to precisely align sequences across this period. We observe no significant difference between atmospheric and marine <sup>14</sup>C records during HE3, suggesting no stratification of surface waters and collapse in Atlantic Meridional Overturning Circulation (AMOC). Instead our results support recent evidence for a weakened AMOC across at least two millennia of the glacial period. Our work adds to a growing body of literature confirming that Heinrich events are not the cause of stadial cooling and suggests changes in the AMOC were not the primary driver of antiphase temperature trends between the hemispheres. Decadally-resolved <sup>14</sup>C in ancient kauri offers a powerful new (and complementary) approach to polar ice core CH<sub>4</sub> alignment for testing hypotheses of abrupt and extreme climate change.</p>},
  author       = {Turney, Chris S M and Palmer, Jonathan and Bronk Ramsey, Christopher and Adolphi, Florian and Muscheler, Raimund and Hughen, Konrad A. and Staff, Richard A. and Jones, Richard T. and Thomas, Zoë A. and Fogwill, Christopher J. and Hogg, Alan},
  issn         = {0277-3791},
  keyword      = {Abrupt climate change,Antarctic Isotope Maximum-4 (AIM4),Atmospheric radiocarbon (C),Bipolar seesaw,Extreme events,Heinrich-3 (H3),Tree-ring},
  language     = {eng},
  month        = {04},
  pages        = {126--134},
  publisher    = {Elsevier},
  series       = {Quaternary Science Reviews},
  title        = {High-precision dating and correlation of ice, marine and terrestrial sequences spanning Heinrich Event 3 : Testing mechanisms of interhemispheric change using New Zealand ancient kauri (Agathis australis)},
  url          = {http://dx.doi.org/10.1016/j.quascirev.2016.02.005},
  volume       = {137},
  year         = {2016},
}