Advanced

The genetic diversity, phylogeography and morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic

Darling, Kate F.; Schweizer, Magali; Knudsen, Karen Luise; Evans, Katharine M.; Bird, Clare; Roberts, Angela; Filipsson, Helena L. LU ; Kim, Jung Hyun; Gudmundsson, Gudmundur and Wade, Christopher M., et al. (2016) In Marine Micropaleontology 129. p.1-23
Abstract

Genetic characterisation (SSU rRNA genotyping) and Scanning Electron Microscope (SEM) imaging of individual tests were used in tandem to determine the modern species richness of the foraminiferal family Elphidiidae (Elphidium, Haynesina and related genera) across the Northeast Atlantic shelf biomes. Specimens were collected at 25 locations from the High Arctic to Iberia, and a total of 1013 individual specimens were successfully SEM imaged and genotyped. Phylogenetic analyses were carried out in combination with 28 other elphidiid sequences from GenBank and seventeen distinct elphidiid genetic types were identified within the sample set, seven being sequenced for the first time. Genetic types cluster into seven main clades which largely... (More)

Genetic characterisation (SSU rRNA genotyping) and Scanning Electron Microscope (SEM) imaging of individual tests were used in tandem to determine the modern species richness of the foraminiferal family Elphidiidae (Elphidium, Haynesina and related genera) across the Northeast Atlantic shelf biomes. Specimens were collected at 25 locations from the High Arctic to Iberia, and a total of 1013 individual specimens were successfully SEM imaged and genotyped. Phylogenetic analyses were carried out in combination with 28 other elphidiid sequences from GenBank and seventeen distinct elphidiid genetic types were identified within the sample set, seven being sequenced for the first time. Genetic types cluster into seven main clades which largely represent their general morphological character. Differences between genetic types at the genetic, morphological and biogeographic levels are indicative of species level distinction. Their biogeographic distributions, in combination with elphidiid SSU sequences from GenBank and high resolution images from the literature show that each of them exhibits species-specific rather than clade-specific biogeographies. Due to taxonomic uncertainty and divergent taxonomic concepts between schools, we believe that morphospecies names should not be placed onto molecular phylogenies unless both the morphology and genetic type have been linked to the formally named holotype, or equivalent. Based on strict morphological criteria, we advocate using only a three-stage approach to taxonomy for practical application in micropalaeontological studies. It comprises genotyping, the production of a formal morphological description of the SEM images associated with the genetic type and then the allocation of the most appropriate taxonomic name by comparison with the formal type description. Using this approach, we were able to apply taxonomic names to fifteen genetic types. One of the remaining two may be potentially cryptic, and one is undescribed in the literature. In general, the phylogeographic distribution is in agreement with our knowledge of the ecology and biogeographical distribution of the corresponding morphospecies, highlighting the generally robust taxonomic framework of the Elphidiidae in time and space.

(Less)
Please use this url to cite or link to this publication:
author
, et al. (More)
(Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Benthic foraminifera, Elphidiidae, Northeast Atlantic, Phylogeography, Protist diversity, Taxonomy
in
Marine Micropaleontology
volume
129
pages
23 pages
publisher
Elsevier
external identifiers
  • scopus:84994560531
  • wos:000390742300001
ISSN
0377-8398
DOI
10.1016/j.marmicro.2016.09.001
language
English
LU publication?
yes
id
23555b1d-1d48-459a-87c5-69565a9fe6bc
date added to LUP
2016-11-25 11:17:59
date last changed
2017-10-29 04:54:31
@article{23555b1d-1d48-459a-87c5-69565a9fe6bc,
  abstract     = {<p>Genetic characterisation (SSU rRNA genotyping) and Scanning Electron Microscope (SEM) imaging of individual tests were used in tandem to determine the modern species richness of the foraminiferal family Elphidiidae (Elphidium, Haynesina and related genera) across the Northeast Atlantic shelf biomes. Specimens were collected at 25 locations from the High Arctic to Iberia, and a total of 1013 individual specimens were successfully SEM imaged and genotyped. Phylogenetic analyses were carried out in combination with 28 other elphidiid sequences from GenBank and seventeen distinct elphidiid genetic types were identified within the sample set, seven being sequenced for the first time. Genetic types cluster into seven main clades which largely represent their general morphological character. Differences between genetic types at the genetic, morphological and biogeographic levels are indicative of species level distinction. Their biogeographic distributions, in combination with elphidiid SSU sequences from GenBank and high resolution images from the literature show that each of them exhibits species-specific rather than clade-specific biogeographies. Due to taxonomic uncertainty and divergent taxonomic concepts between schools, we believe that morphospecies names should not be placed onto molecular phylogenies unless both the morphology and genetic type have been linked to the formally named holotype, or equivalent. Based on strict morphological criteria, we advocate using only a three-stage approach to taxonomy for practical application in micropalaeontological studies. It comprises genotyping, the production of a formal morphological description of the SEM images associated with the genetic type and then the allocation of the most appropriate taxonomic name by comparison with the formal type description. Using this approach, we were able to apply taxonomic names to fifteen genetic types. One of the remaining two may be potentially cryptic, and one is undescribed in the literature. In general, the phylogeographic distribution is in agreement with our knowledge of the ecology and biogeographical distribution of the corresponding morphospecies, highlighting the generally robust taxonomic framework of the Elphidiidae in time and space.</p>},
  author       = {Darling, Kate F. and Schweizer, Magali and Knudsen, Karen Luise and Evans, Katharine M. and Bird, Clare and Roberts, Angela and Filipsson, Helena L. and Kim, Jung Hyun and Gudmundsson, Gudmundur and Wade, Christopher M. and Sayer, Martin D J and Austin, William E N},
  issn         = {0377-8398},
  keyword      = {Benthic foraminifera,Elphidiidae,Northeast Atlantic,Phylogeography,Protist diversity,Taxonomy},
  language     = {eng},
  month        = {12},
  pages        = {1--23},
  publisher    = {Elsevier},
  series       = {Marine Micropaleontology},
  title        = {The genetic diversity, phylogeography and morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic},
  url          = {http://dx.doi.org/10.1016/j.marmicro.2016.09.001},
  volume       = {129},
  year         = {2016},
}