Advanced

Multiscale modeling and characterization of granular matter: From grain kinematics to continuum mechanics

Andrade, J. E.; Avila, C. F.; Hall, Stephen LU ; Lenoir, N. and Viggiani, G. (2011) In Journal of the Mechanics and Physics of Solids 59(2). p.237-250
Abstract
Granular sands are characterized and modeled here by explicitly exploiting the discrete-continuum duality of granular matter. Grain-scale kinematics, obtained by shearing a sample under triaxial compression, are coupled with a recently proposed multiscale computational framework to model the behavior of the material without resorting to phenomenological evolution (hardening) laws. By doing this, complex material behavior is captured by extracting the evolution of key properties directly from the grain-scale mechanics and injecting it into a continuum description (e.g., elastoplasticity). The effectiveness of the method is showcased by two examples: one linking discrete element computations with finite elements and another example linking a... (More)
Granular sands are characterized and modeled here by explicitly exploiting the discrete-continuum duality of granular matter. Grain-scale kinematics, obtained by shearing a sample under triaxial compression, are coupled with a recently proposed multiscale computational framework to model the behavior of the material without resorting to phenomenological evolution (hardening) laws. By doing this, complex material behavior is captured by extracting the evolution of key properties directly from the grain-scale mechanics and injecting it into a continuum description (e.g., elastoplasticity). The effectiveness of the method is showcased by two examples: one linking discrete element computations with finite elements and another example linking a triaxial compression experiment using computed tomography and digital image correlation with finite element computation. In both cases, dilatancy and friction are used as the fundamental plastic variables and are obtained directly from the grain kinematics. In the case of the result linked to the experiment, the onset and evolution of a persistent shear band is modeled, showing for the first time three-dimensional multiscale results in the post-bifurcation regime with real materials and good quantitative agreement with experiments. (C) 2010 Elsevier Ltd. All rights reserved. (Less)
Please use this url to cite or link to this publication:
author
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Micro-structures, Constitutive behavior, Granular material, Multiscale, X-ray computed tomography
in
Journal of the Mechanics and Physics of Solids
volume
59
issue
2
pages
237 - 250
publisher
Elsevier
external identifiers
  • scopus:78651289420
ISSN
1873-4782
DOI
10.1016/j.jmps.2010.10.009
language
English
LU publication?
no
id
4524b9c1-c44b-4eec-898d-fd23318a7bb4 (old id 2441037)
date added to LUP
2012-04-25 12:37:31
date last changed
2017-11-05 04:05:15
@article{4524b9c1-c44b-4eec-898d-fd23318a7bb4,
  abstract     = {Granular sands are characterized and modeled here by explicitly exploiting the discrete-continuum duality of granular matter. Grain-scale kinematics, obtained by shearing a sample under triaxial compression, are coupled with a recently proposed multiscale computational framework to model the behavior of the material without resorting to phenomenological evolution (hardening) laws. By doing this, complex material behavior is captured by extracting the evolution of key properties directly from the grain-scale mechanics and injecting it into a continuum description (e.g., elastoplasticity). The effectiveness of the method is showcased by two examples: one linking discrete element computations with finite elements and another example linking a triaxial compression experiment using computed tomography and digital image correlation with finite element computation. In both cases, dilatancy and friction are used as the fundamental plastic variables and are obtained directly from the grain kinematics. In the case of the result linked to the experiment, the onset and evolution of a persistent shear band is modeled, showing for the first time three-dimensional multiscale results in the post-bifurcation regime with real materials and good quantitative agreement with experiments. (C) 2010 Elsevier Ltd. All rights reserved.},
  author       = {Andrade, J. E. and Avila, C. F. and Hall, Stephen and Lenoir, N. and Viggiani, G.},
  issn         = {1873-4782},
  keyword      = {Micro-structures,Constitutive behavior,Granular material,Multiscale,X-ray computed tomography},
  language     = {eng},
  number       = {2},
  pages        = {237--250},
  publisher    = {Elsevier},
  series       = {Journal of the Mechanics and Physics of Solids},
  title        = {Multiscale modeling and characterization of granular matter: From grain kinematics to continuum mechanics},
  url          = {http://dx.doi.org/10.1016/j.jmps.2010.10.009},
  volume       = {59},
  year         = {2011},
}