Advanced

Stochastic Modeling and Optimization under Uncertainty of a Hydro Power System

Halldin, Roger LU (2005) In Doctoral theses in mathematical sciences 2005:6.
Abstract
Electricity bought and sold on the deregulated Nordic power market is dominated by hydro power. However, hydro power generation is restricted by the amount of water in reservoirs. The inflows to these reservoirs show a yearly cycle and seasonal planning of the production is necessary.



Seasonal planning up to 1.5 years for a power producer in a hydro-thermal system with a regulated river is considered. For a price-taking, risk-averse producer who wants to maximize his profit, the representation of the stochastic variables, i.e. inflows and power price, in the planning algorithm is crucial. The representation of the stochastic variables as scenario trees is the main subject of this thesis.



The inflows to... (More)
Electricity bought and sold on the deregulated Nordic power market is dominated by hydro power. However, hydro power generation is restricted by the amount of water in reservoirs. The inflows to these reservoirs show a yearly cycle and seasonal planning of the production is necessary.



Seasonal planning up to 1.5 years for a power producer in a hydro-thermal system with a regulated river is considered. For a price-taking, risk-averse producer who wants to maximize his profit, the representation of the stochastic variables, i.e. inflows and power price, in the planning algorithm is crucial. The representation of the stochastic variables as scenario trees is the main subject of this thesis.



The inflows to the reservoirs in a river are highly spatially correlated and show temporal autocorrelation, as well. These properties are used to construct scenario trees. By using time series models the autocorrelation is explained and principal component analysis reduce substantially the dimension of the stochastic variables. Since the available amount of water that can be used for power production varies between years due to meteorological reasons the spot price shows large fluctuations. This dependence is used for modeling the power price and power contracts. Altogether, this gives an efficient method to create scenario trees suitable for stochastic programming with few assumptions concerning stochastic properties of the underlying stochastic processes.



Scenario tree generation is the stochastic part in the solution to the seasonal planning problem. A multi-stage stochastic programming model with the inflows to different stations and the power price as stochastic elements has been constructed as well as a program system, SPOT, for obtaining the solution in practice. The different scenario tree generation methods have been evaluated as well as a comparison between the stochastic programming model and a deterministic model. (Less)
Please use this url to cite or link to this publication:
author
opponent
  • Professor Römisch, Werner, Institut für Mathematik, Humboldt-Universität zu Berlin
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Statistik, actuarial mathematics, programming, operations research, Statistics, energy derivatives, multistage stochastic programs, electricity prices, principal component analysis, Scenario trees, inflow modeling, operationsanalys, programmering, aktuariematematik
in
Doctoral theses in mathematical sciences
volume
2005:6
pages
194 pages
publisher
Mathematical Statistics, Centre for Mathematical Sciences, Lund University
defense location
Matematikcentrum, Sölvegatan 18, sal MH:A, Lunds Tekniska Högskola
defense date
2005-06-03 09:15
ISSN
1404-0034
ISBN
91-628-6539-0
language
English
LU publication?
yes
id
46c7fafa-e565-4807-8f15-20777b0ae259 (old id 24567)
date added to LUP
2007-06-01 07:36:18
date last changed
2016-09-19 08:44:55
@phdthesis{46c7fafa-e565-4807-8f15-20777b0ae259,
  abstract     = {Electricity bought and sold on the deregulated Nordic power market is dominated by hydro power. However, hydro power generation is restricted by the amount of water in reservoirs. The inflows to these reservoirs show a yearly cycle and seasonal planning of the production is necessary.<br/><br>
<br/><br>
Seasonal planning up to 1.5 years for a power producer in a hydro-thermal system with a regulated river is considered. For a price-taking, risk-averse producer who wants to maximize his profit, the representation of the stochastic variables, i.e. inflows and power price, in the planning algorithm is crucial. The representation of the stochastic variables as scenario trees is the main subject of this thesis.<br/><br>
<br/><br>
The inflows to the reservoirs in a river are highly spatially correlated and show temporal autocorrelation, as well. These properties are used to construct scenario trees. By using time series models the autocorrelation is explained and principal component analysis reduce substantially the dimension of the stochastic variables. Since the available amount of water that can be used for power production varies between years due to meteorological reasons the spot price shows large fluctuations. This dependence is used for modeling the power price and power contracts. Altogether, this gives an efficient method to create scenario trees suitable for stochastic programming with few assumptions concerning stochastic properties of the underlying stochastic processes.<br/><br>
<br/><br>
Scenario tree generation is the stochastic part in the solution to the seasonal planning problem. A multi-stage stochastic programming model with the inflows to different stations and the power price as stochastic elements has been constructed as well as a program system, SPOT, for obtaining the solution in practice. The different scenario tree generation methods have been evaluated as well as a comparison between the stochastic programming model and a deterministic model.},
  author       = {Halldin, Roger},
  isbn         = {91-628-6539-0},
  issn         = {1404-0034},
  keyword      = {Statistik,actuarial mathematics,programming,operations research,Statistics,energy derivatives,multistage stochastic programs,electricity prices,principal component analysis,Scenario trees,inflow modeling,operationsanalys,programmering,aktuariematematik},
  language     = {eng},
  pages        = {194},
  publisher    = {Mathematical Statistics, Centre for Mathematical Sciences, Lund University},
  school       = {Lund University},
  series       = {Doctoral theses in mathematical sciences},
  title        = {Stochastic Modeling and Optimization under Uncertainty of a Hydro Power System},
  volume       = {2005:6},
  year         = {2005},
}