Advanced

Millimeter-Wave Impulse Radio

Ärlelid, Mats LU (2012)
Abstract (Swedish)
Popular Abstract in Swedish

Trådlösa system som använder elektromagnetisk strålning, även kallat radio kort och gott, har fått ett enormt genomslag i våra liv. Radio används överallt: telefoni, GPS, mobilt bredband och TV är tillämpningar som vi som privatpersoner lätt kommer i kontakt med men även till radar, magnetisk resonanstomografi och andra avbildande system. Speciellt datakommunikation i mindre nät, så kallade WLAN (wireless local area network), har blivit en vanlig teknik i hemmen. I ett flerfamiljshus kan det utan problem finnas ett dussintal sådana nät och allt eftersom antalet produkter med WLAN ökar och mängden data som skickas växer så försämras upplevelsen av nätet. Det beror på att all trådlös data som... (More)
Popular Abstract in Swedish

Trådlösa system som använder elektromagnetisk strålning, även kallat radio kort och gott, har fått ett enormt genomslag i våra liv. Radio används överallt: telefoni, GPS, mobilt bredband och TV är tillämpningar som vi som privatpersoner lätt kommer i kontakt med men även till radar, magnetisk resonanstomografi och andra avbildande system. Speciellt datakommunikation i mindre nät, så kallade WLAN (wireless local area network), har blivit en vanlig teknik i hemmen. I ett flerfamiljshus kan det utan problem finnas ett dussintal sådana nät och allt eftersom antalet produkter med WLAN ökar och mängden data som skickas växer så försämras upplevelsen av nätet. Det beror på att all trådlös data som skickas i nätet går genom smala frekvensfönster, så kallade frekvensband med ett begränsat antal kanaler. De här fönstren har tillkommit genom en lång process mellan reglerande och standardiserande organ. Att uppnå hastigheter på flera gigabit per sekund i dagens WLAN vid 2.4 GHz är inte möjligt just på grund av de smala frekvensbanden och mängden störningar. Genom att göra ett ordentligt kliv i frekvens, upp till millimetervågorna och närmare bestämt 60 GHz, så är förutsättningarna helt annorlunda. Till att börja med så finns det dels upp till 9 GHz bandbredd tilldelat av olika reglerande organ jämfört med totalt 0.1 GHz för 2.4 GHz bandet och dels så dämpas den trådlösa signalen mer vid 60 GHz, vilket innebär att nät som använder samma frekvensfönster kan packas tätare utan att störa varandra. Den här avhandlingen innehåller beskrivning av design och operation av elektriska kretsar som kan användas för generering och detektering av signaler vid 60 GHz. Det grundläggande byggblocket är en resonant tunneldiod vars kvantmekaniska egenskaper ger upphov till negativ resistans, som till skillnad från positiv resistans inte förbrukar energi utan spänningsfallet avtar med ökande ström. Med en resonant tunneldiod genereras korta pulser med millimetervågor med hög effektivitet. Genom modulera pulserna med till exempel on-off keying, så har trådlös kommunikation demonstrerats med 4 Gbit/s. Radiopulser så korta som 41 ps,repeterade med 15 GHz och en toppeffekt på 7 dBm gör att den presenterade teknologin kan vara mycket tillämpbar för millimetervågsradio med hög bithastighet över korta avstånd. Det går även att detektera radiopulser med samma kretslösning genom att ändra den elektriska

styrsignalen till generatorn och utnyttja superregenerativ örstärkning för att detektera väldigt svaga radiopulser. Utöver kommunikation kan den här teknologin även vara intressant i andra system såsom radar, avbildning och lokalisering. Där ger de korta

pulserna fördelen att bidra med hög upplösning till mätningarna. (Less)
Abstract
This thesis investigates the opportunity of wireless multi-gigabit per second communication at the millimeter-wave (mmW) frequencies around 60 GHz by using impulse radio and nanoelectronics. Today most wireless communication take place in the microwave region, where several different systems and applications are crowding the narrow-band channels. Complicated schemes are applied in order to avoid interference and still provide good performance in terms of bit rate. Many regulatory associations have allocated a wide unlicensed frequency band around 60 GHz, which may offer the possibility to build short-range wireless systems that provide high throughput. Wireless high definition multimedia interface (HDMI) and fast synchronization of mobile... (More)
This thesis investigates the opportunity of wireless multi-gigabit per second communication at the millimeter-wave (mmW) frequencies around 60 GHz by using impulse radio and nanoelectronics. Today most wireless communication take place in the microwave region, where several different systems and applications are crowding the narrow-band channels. Complicated schemes are applied in order to avoid interference and still provide good performance in terms of bit rate. Many regulatory associations have allocated a wide unlicensed frequency band around 60 GHz, which may offer the possibility to build short-range wireless systems that provide high throughput. Wireless high definition multimedia interface (HDMI) and fast synchronization of mobile devices are some of the intended applications. Furthermore, remote sensing applications such as radar, imaging and localization may be considered due to the wide bandwidth, which may offer high resolution.

The impulse radio front-ends that are presented in this thesis are monolithic microwave integrated circuit (MMIC) designs in compound semiconductor materials, such as GaAs and InGaAs, compounds built from groups III-V of the periodic system. By choosing such compound materials, it is possible to design devices with high performance such as III-V metal-oxide-semiconductor field-effect transistors (MOSFETs) with mmW cut-off frequency and high transconductance. Moreover, it is possible to utilize bandgap-engineered devices with unique properties such as resonant tunneling. The presented transmitters incorporate resonant tunnel diodes (RTDs) that provide negative differential conductance, and may be used to generate substantial amount of mmW signal power by integrating the device in a resonance circuit, an oscillator. Furthermore, the addition of a third gating terminal to the RTD will present control over both the magnitude and the sign of the differential conductance. By switching the differential conductance of the RTD device between positive and negative magnitudes in a resonance circuit, it is possible to turn the oscillator on and off to generate wavelets, short pulses of radio frequency oscillation. This design offers sub-period start-up time, which is due to the kick-start action of the oscillator. Also,

rapid decay is provided since the RTD device actively helps to quench the oscillations when set to positive differential conductance. The best wavelet generator operation was achieved with a MOSFET/RTD combination, where 41 ps long wavelets were generated with 7 dBm peak output power up to a rate of 15 GHz. The wavelet generator was used to investigate the properties of mmW impulse radio and studies show

the possibility to obtain 4 Gbps links over short distances using low-level modulationon-off keying.

The wavelet generator may also be used as a super-regenerative oscillator by modifying the control signal. Instead of switching the RTD device rapidly into negative differential conductance, it is tuned slowly. Through this action the oscillation may

be started from noise or received signal energy. A 400 Msamples/ super-regenerative oscillator is presented, which may be an interesting candidate for implementation in a low-power mmW impulse radio receiver. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Prof. Fay, Patrick, Department of Electrical Engineering, University of Notre Dame, IN, USA
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Compound semiconductor, resonant tunneling diode, ultra wideband, 60 GHz, on-off keying, transmitter, receiver, and super-regenerative oscillator
pages
151 pages
defense location
Lecture hall E:1406, E-building, Ole Römers väg 3, Lund University Faculty of Engineering
defense date
2012-06-13 10:15
ISBN
978-91-7473-330-3
project
EIT_HSWC:RFNano RF tranceivers and nano devices
language
English
LU publication?
yes
id
b1bf18ea-5662-461b-87fa-033ce55302a3 (old id 2540282)
date added to LUP
2012-05-23 12:31:50
date last changed
2016-09-19 08:45:17
@phdthesis{b1bf18ea-5662-461b-87fa-033ce55302a3,
  abstract     = {This thesis investigates the opportunity of wireless multi-gigabit per second communication at the millimeter-wave (mmW) frequencies around 60 GHz by using impulse radio and nanoelectronics. Today most wireless communication take place in the microwave region, where several different systems and applications are crowding the narrow-band channels. Complicated schemes are applied in order to avoid interference and still provide good performance in terms of bit rate. Many regulatory associations have allocated a wide unlicensed frequency band around 60 GHz, which may offer the possibility to build short-range wireless systems that provide high throughput. Wireless high definition multimedia interface (HDMI) and fast synchronization of mobile devices are some of the intended applications. Furthermore, remote sensing applications such as radar, imaging and localization may be considered due to the wide bandwidth, which may offer high resolution.<br/><br>
The impulse radio front-ends that are presented in this thesis are monolithic microwave integrated circuit (MMIC) designs in compound semiconductor materials, such as GaAs and InGaAs, compounds built from groups III-V of the periodic system. By choosing such compound materials, it is possible to design devices with high performance such as III-V metal-oxide-semiconductor field-effect transistors (MOSFETs) with mmW cut-off frequency and high transconductance. Moreover, it is possible to utilize bandgap-engineered devices with unique properties such as resonant tunneling. The presented transmitters incorporate resonant tunnel diodes (RTDs) that provide negative differential conductance, and may be used to generate substantial amount of mmW signal power by integrating the device in a resonance circuit, an oscillator. Furthermore, the addition of a third gating terminal to the RTD will present control over both the magnitude and the sign of the differential conductance. By switching the differential conductance of the RTD device between positive and negative magnitudes in a resonance circuit, it is possible to turn the oscillator on and off to generate wavelets, short pulses of radio frequency oscillation. This design offers sub-period start-up time, which is due to the kick-start action of the oscillator. Also,<br/><br>
rapid decay is provided since the RTD device actively helps to quench the oscillations when set to positive differential conductance. The best wavelet generator operation was achieved with a MOSFET/RTD combination, where 41 ps long wavelets were generated with 7 dBm peak output power up to a rate of 15 GHz. The wavelet generator was used to investigate the properties of mmW impulse radio and studies show<br/><br>
the possibility to obtain 4 Gbps links over short distances using low-level modulationon-off keying.<br/><br>
The wavelet generator may also be used as a super-regenerative oscillator by modifying the control signal. Instead of switching the RTD device rapidly into negative differential conductance, it is tuned slowly. Through this action the oscillation may<br/><br>
be started from noise or received signal energy. A 400 Msamples/ super-regenerative oscillator is presented, which may be an interesting candidate for implementation in a low-power mmW impulse radio receiver.},
  author       = {Ärlelid, Mats},
  isbn         = {978-91-7473-330-3},
  keyword      = {Compound semiconductor,resonant tunneling diode,ultra wideband,60 GHz,on-off keying,transmitter,receiver,and super-regenerative oscillator},
  language     = {eng},
  pages        = {151},
  school       = {Lund University},
  title        = {Millimeter-Wave Impulse Radio},
  year         = {2012},
}