Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Origins of the long-range exciton diffusion in perovskite nanocrystal films : photon recycling vs exciton hopping

Giovanni, David ; Righetto, Marcello ; Zhang, Qiannan ; Lim, Jia Wei Melvin ; Ramesh, Sankaran LU orcid and Sum, Tze Chien (2021) In Light: Science and Applications 10(1).
Abstract

The outstanding optoelectronic performance of lead halide perovskites lies in their exceptional carrier diffusion properties. As the perovskite material dimensionality is reduced to exploit the quantum confinement effects, the disruption to the perovskite lattice, often with insulating organic ligands, raises new questions on the charge diffusion properties. Herein, we report direct imaging of >1 μm exciton diffusion lengths in CH3NH3PbBr3 perovskite nanocrystal (PNC) films. Surprisingly, the resulting exciton mobilities in these PNC films can reach 10 ± 2 cm2 V−1 s−1, which is counterintuitively several times higher than the carrier mobility in 3D perovskite films. We... (More)

The outstanding optoelectronic performance of lead halide perovskites lies in their exceptional carrier diffusion properties. As the perovskite material dimensionality is reduced to exploit the quantum confinement effects, the disruption to the perovskite lattice, often with insulating organic ligands, raises new questions on the charge diffusion properties. Herein, we report direct imaging of >1 μm exciton diffusion lengths in CH3NH3PbBr3 perovskite nanocrystal (PNC) films. Surprisingly, the resulting exciton mobilities in these PNC films can reach 10 ± 2 cm2 V−1 s−1, which is counterintuitively several times higher than the carrier mobility in 3D perovskite films. We show that this ultralong exciton diffusion originates from both efficient inter-NC exciton hopping (via Förster energy transfer) and the photon recycling process with a smaller yet significant contribution. Importantly, our study not only sheds new light on the highly debated origins of the excellent exciton diffusion in PNC films but also highlights the potential of PNCs for optoelectronic applications.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
publishing date
type
Contribution to journal
publication status
published
subject
in
Light: Science and Applications
volume
10
issue
1
article number
2
publisher
Nature Publishing Group
external identifiers
  • scopus:85098562466
ISSN
2095-5545
DOI
10.1038/s41377-020-00443-z
language
English
LU publication?
no
additional info
Publisher Copyright: © 2021, The Author(s).
id
26577fc6-da41-491b-b915-5756eeddac17
date added to LUP
2023-02-15 22:12:05
date last changed
2023-03-02 12:34:36
@article{26577fc6-da41-491b-b915-5756eeddac17,
  abstract     = {{<p>The outstanding optoelectronic performance of lead halide perovskites lies in their exceptional carrier diffusion properties. As the perovskite material dimensionality is reduced to exploit the quantum confinement effects, the disruption to the perovskite lattice, often with insulating organic ligands, raises new questions on the charge diffusion properties. Herein, we report direct imaging of &gt;1 μm exciton diffusion lengths in CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub> perovskite nanocrystal (PNC) films. Surprisingly, the resulting exciton mobilities in these PNC films can reach 10 ± 2 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>, which is counterintuitively several times higher than the carrier mobility in 3D perovskite films. We show that this ultralong exciton diffusion originates from both efficient inter-NC exciton hopping (via Förster energy transfer) and the photon recycling process with a smaller yet significant contribution. Importantly, our study not only sheds new light on the highly debated origins of the excellent exciton diffusion in PNC films but also highlights the potential of PNCs for optoelectronic applications.</p>}},
  author       = {{Giovanni, David and Righetto, Marcello and Zhang, Qiannan and Lim, Jia Wei Melvin and Ramesh, Sankaran and Sum, Tze Chien}},
  issn         = {{2095-5545}},
  language     = {{eng}},
  number       = {{1}},
  publisher    = {{Nature Publishing Group}},
  series       = {{Light: Science and Applications}},
  title        = {{Origins of the long-range exciton diffusion in perovskite nanocrystal films : photon recycling vs exciton hopping}},
  url          = {{http://dx.doi.org/10.1038/s41377-020-00443-z}},
  doi          = {{10.1038/s41377-020-00443-z}},
  volume       = {{10}},
  year         = {{2021}},
}