Advanced

Thermodynamic Simulation of HCCI Engine Systems

Erlandsson, Olof LU (2002)
Abstract (Swedish)
Popular Abstract in Swedish

Avhandlingen omfattar förutom en kort inledning, i huvudsak två delar: (1) Beskrivning av teorin bakom ett datorbaserat verktyg för simulering av termodynamiken i ett motorsystem, där främst motorer med Homogen Kompressionsantändning (Homogeneous Charge Compression Ignition, HCCI) avses. Med system avses förutom själva motorn, turboladdare, laddluftkylare, insug och avgas volymer (samlingsrör) m.m. Alla komponenter representeras av var sin modell med undermodeller. Som exempel: Själva motormodellen omfattar termodynamiska modeller för t.ex. gasegenskaper, massflöde över insug- och avgasventiler, värmefrigörelse och värmeförluster i cylindern. Ett beräkningsprogram för kemisk kinetik kan länkas... (More)
Popular Abstract in Swedish

Avhandlingen omfattar förutom en kort inledning, i huvudsak två delar: (1) Beskrivning av teorin bakom ett datorbaserat verktyg för simulering av termodynamiken i ett motorsystem, där främst motorer med Homogen Kompressionsantändning (Homogeneous Charge Compression Ignition, HCCI) avses. Med system avses förutom själva motorn, turboladdare, laddluftkylare, insug och avgas volymer (samlingsrör) m.m. Alla komponenter representeras av var sin modell med undermodeller. Som exempel: Själva motormodellen omfattar termodynamiska modeller för t.ex. gasegenskaper, massflöde över insug- och avgasventiler, värmefrigörelse och värmeförluster i cylindern. Ett beräkningsprogram för kemisk kinetik kan länkas till programmet för att ge en prediktering av tändvinkel. (2) I den andra delen används detta verktyg för att studera och analystera fenomen som kan uppstår i HCCI motorer, olika parametrar som påverkar tändning i motorn och resulterande verkningsgrad och prestanda hos systemet. Systemsimuleringar visas med olika uppbyggnad med syftet att optimera mot verkningsgrad och prestanda, utan att ge avkall på HCCI motorns låga kväveoxid emissioner. (Less)
Abstract
This thesis focuses on engine system simulation using thermodynamics and chemical kinetic models to investigate the performance and efficiency of Homogeneous Charge Compression Ignition (HCCI) engines for stationary applications.



It includes the development of software as well as models for engine, turbocharger, intercooler, inlet and exhaust manifolds, wastegate valve, inlet air humidifier, inlet air heater and more. The engine model can be classified as a one-zone, zero-dimensional and includes sub-models for in-cylinder heat transfer, exhaust port heat transfer, heat release and the valve flow process. The turbocharger model is developed in steps and is based on a polynomial fit to experimental compressor and turbine... (More)
This thesis focuses on engine system simulation using thermodynamics and chemical kinetic models to investigate the performance and efficiency of Homogeneous Charge Compression Ignition (HCCI) engines for stationary applications.



It includes the development of software as well as models for engine, turbocharger, intercooler, inlet and exhaust manifolds, wastegate valve, inlet air humidifier, inlet air heater and more. The engine model can be classified as a one-zone, zero-dimensional and includes sub-models for in-cylinder heat transfer, exhaust port heat transfer, heat release and the valve flow process. The turbocharger model is developed in steps and is based on a polynomial fit to experimental compressor and turbine performance data. Inlet and exhaust manifolds are treated as well-mixed volumes. A simplified model for the humidifier is adopted in order to simulate a humid air motor (HAM) concept. The whole engine system is zero dimensional and the different system components are linked by means of mean values for mass flow, temperatures, pressures and gas composition. The NASA-polynomials are used for calculating thermal and transport properties. The extended Zeldovich mechanism is used as an indicator of significant NO formation. The models are validated through comparisons with experiments on mainly diesel and HCCI engines, both cycle and system results.HCCI engine cycle simulations are made, showing the influence of various engine parameters e.g. compression ratio, engine speed, air-fuel ratio, exhaust gas recycling, inlet pressure and valve timing. Mainly natural gas and landfill gas are studied. The self-stabilizing feature of HCCI ignition timing is investigated using chemical kinetics.



HCCI engine system simulations are made, both with (to find ignition timing) and without chemical kinetics, investigating turbocharging and the influence of turbine size. The HCCI - HAM concept is investigated and compared to simpler systems. (Less)
Please use this url to cite or link to this publication:
author
opponent
  • Ph. D. M. E Wong, Victor W., MIT, Cambridge, MA, U.S.A.
organization
publishing date
type
Thesis
publication status
published
subject
keywords
HAM, Turbine, Compressor, Turbocharger, Engine, Modeling, HCCI, Simulation, Motors and propulsion systems, Motorer, framdrivningssystem
pages
121 pages
publisher
Combustion Engines
defense location
Lund Institute of Technology (LTH), M-building (Ole Römers väg 1), room M:A
defense date
2002-12-06 10:15
external identifiers
  • other:ISRN: LUTMDN/TMHP--02/1007--SE
ISSN
0282-1990
ISBN
91-628-5427-5
language
English
LU publication?
yes
id
b1a42c56-ba3a-4d9d-a17d-e7f6529d6d51 (old id 27596)
date added to LUP
2007-06-07 16:52:48
date last changed
2016-09-19 08:44:55
@phdthesis{b1a42c56-ba3a-4d9d-a17d-e7f6529d6d51,
  abstract     = {This thesis focuses on engine system simulation using thermodynamics and chemical kinetic models to investigate the performance and efficiency of Homogeneous Charge Compression Ignition (HCCI) engines for stationary applications.<br/><br>
<br/><br>
It includes the development of software as well as models for engine, turbocharger, intercooler, inlet and exhaust manifolds, wastegate valve, inlet air humidifier, inlet air heater and more. The engine model can be classified as a one-zone, zero-dimensional and includes sub-models for in-cylinder heat transfer, exhaust port heat transfer, heat release and the valve flow process. The turbocharger model is developed in steps and is based on a polynomial fit to experimental compressor and turbine performance data. Inlet and exhaust manifolds are treated as well-mixed volumes. A simplified model for the humidifier is adopted in order to simulate a humid air motor (HAM) concept. The whole engine system is zero dimensional and the different system components are linked by means of mean values for mass flow, temperatures, pressures and gas composition. The NASA-polynomials are used for calculating thermal and transport properties. The extended Zeldovich mechanism is used as an indicator of significant NO formation. The models are validated through comparisons with experiments on mainly diesel and HCCI engines, both cycle and system results.HCCI engine cycle simulations are made, showing the influence of various engine parameters e.g. compression ratio, engine speed, air-fuel ratio, exhaust gas recycling, inlet pressure and valve timing. Mainly natural gas and landfill gas are studied. The self-stabilizing feature of HCCI ignition timing is investigated using chemical kinetics.<br/><br>
<br/><br>
HCCI engine system simulations are made, both with (to find ignition timing) and without chemical kinetics, investigating turbocharging and the influence of turbine size. The HCCI - HAM concept is investigated and compared to simpler systems.},
  author       = {Erlandsson, Olof},
  isbn         = {91-628-5427-5},
  issn         = {0282-1990},
  keyword      = {HAM,Turbine,Compressor,Turbocharger,Engine,Modeling,HCCI,Simulation,Motors and propulsion systems,Motorer,framdrivningssystem},
  language     = {eng},
  pages        = {121},
  publisher    = {Combustion Engines},
  school       = {Lund University},
  title        = {Thermodynamic Simulation of HCCI Engine Systems},
  year         = {2002},
}