Advanced

Upstream plasticity and downstream robustness in evolution of molecular networks

Maslov, S; Sneppen, K; Eriksen, Kasper LU and Yan, KK (2004) In BMC Evolutionary Biology 4.
Abstract
Background: Gene duplication followed by the functional divergence of the resulting pair of paralogous proteins is a major force shaping molecular networks in living organisms. Recent species-wide data for protein-protein interactions and transcriptional regulations allow us to assess the effect of gene duplication on robustness and plasticity of these molecular networks. Results: We demonstrate that the transcriptional regulation of duplicated genes in baker's yeast Saccharomyces cerevisiae diverges fast so that on average they lose 3% of common transcription factors for every 1% divergence of their amino acid sequences. The set of protein-protein interaction partners of their protein products changes at a slower rate exhibiting a broad... (More)
Background: Gene duplication followed by the functional divergence of the resulting pair of paralogous proteins is a major force shaping molecular networks in living organisms. Recent species-wide data for protein-protein interactions and transcriptional regulations allow us to assess the effect of gene duplication on robustness and plasticity of these molecular networks. Results: We demonstrate that the transcriptional regulation of duplicated genes in baker's yeast Saccharomyces cerevisiae diverges fast so that on average they lose 3% of common transcription factors for every 1% divergence of their amino acid sequences. The set of protein-protein interaction partners of their protein products changes at a slower rate exhibiting a broad plateau for amino acid sequence similarity above 70%. The stability of functional roles of duplicated genes at such relatively low sequence similarity is further corroborated by their ability to substitute for each other in single gene knockout experiments in yeast and RNAi experiments in a nematode worm Caenorhabditis elegans. We also quantified the divergence rate of physical interaction neighborhoods of paralogous proteins in a bacterium Helicobacter pylori and a fly Drosophila melanogaster. However, in the absence of system-wide data on transcription factors' binding in these organisms we could not compare this rate to that of transcriptional regulation of duplicated genes. Conclusions: For all molecular networks studied in this work we found that even the most distantly related paralogous proteins with amino acid sequence identities around 20% on average have more similar positions within a network than a randomly selected pair of proteins. For yeast we also found that the upstream regulation of genes evolves more rapidly than downstream functions of their protein products. This is in accordance with a view which puts regulatory changes as one of the main driving forces of the evolution. In this context a very important open question is to what extent our results obtained for homologous genes within a single species (paralogs) carries over to homologous proteins in different species (orthologs). (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
BMC Evolutionary Biology
volume
4
publisher
BioMed Central
external identifiers
  • pmid:15070432
  • wos:000220601400001
  • scopus:2942615357
ISSN
1471-2148
DOI
10.1186/1471-2148-4-9
language
English
LU publication?
yes
id
6fd630f2-c1d9-41ba-ad76-9f625d6045b0 (old id 283039)
date added to LUP
2007-10-25 15:34:59
date last changed
2017-07-02 04:27:40
@article{6fd630f2-c1d9-41ba-ad76-9f625d6045b0,
  abstract     = {Background: Gene duplication followed by the functional divergence of the resulting pair of paralogous proteins is a major force shaping molecular networks in living organisms. Recent species-wide data for protein-protein interactions and transcriptional regulations allow us to assess the effect of gene duplication on robustness and plasticity of these molecular networks. Results: We demonstrate that the transcriptional regulation of duplicated genes in baker's yeast Saccharomyces cerevisiae diverges fast so that on average they lose 3% of common transcription factors for every 1% divergence of their amino acid sequences. The set of protein-protein interaction partners of their protein products changes at a slower rate exhibiting a broad plateau for amino acid sequence similarity above 70%. The stability of functional roles of duplicated genes at such relatively low sequence similarity is further corroborated by their ability to substitute for each other in single gene knockout experiments in yeast and RNAi experiments in a nematode worm Caenorhabditis elegans. We also quantified the divergence rate of physical interaction neighborhoods of paralogous proteins in a bacterium Helicobacter pylori and a fly Drosophila melanogaster. However, in the absence of system-wide data on transcription factors' binding in these organisms we could not compare this rate to that of transcriptional regulation of duplicated genes. Conclusions: For all molecular networks studied in this work we found that even the most distantly related paralogous proteins with amino acid sequence identities around 20% on average have more similar positions within a network than a randomly selected pair of proteins. For yeast we also found that the upstream regulation of genes evolves more rapidly than downstream functions of their protein products. This is in accordance with a view which puts regulatory changes as one of the main driving forces of the evolution. In this context a very important open question is to what extent our results obtained for homologous genes within a single species (paralogs) carries over to homologous proteins in different species (orthologs).},
  author       = {Maslov, S and Sneppen, K and Eriksen, Kasper and Yan, KK},
  issn         = {1471-2148},
  language     = {eng},
  publisher    = {BioMed Central},
  series       = {BMC Evolutionary Biology},
  title        = {Upstream plasticity and downstream robustness in evolution of molecular networks},
  url          = {http://dx.doi.org/10.1186/1471-2148-4-9},
  volume       = {4},
  year         = {2004},
}