Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

A computational study of the thermal ionization of soot particles and its effect on their growth in laminar premixed flames

Balthasar, Michael LU ; Mauss, Fabian LU and Wang, H (2002) In Combustion and Flame 129(1-2). p.204-216
Abstract
The effect of thermal ionization on the growth of soot particles has been analyzed by detailed kinetic modeling of a low-pressure premixed acetylene flame. The detailed kinetic model considers the oxidation of fuel, the formation and growth of polycyclic aromatic hydrocarbons, and particle inception, coagulation, as well as mass growth via surface reactions. A numerical method has been developed, which considers the production of charged particles by thermal ionization as well as coagulation and surface reactions of these particles. The enhancement of coagulation by collisions between charged-charged and charged-neutral particles is rigorously accounted for in the numerical model. The particle size distribution functions for both neutral... (More)
The effect of thermal ionization on the growth of soot particles has been analyzed by detailed kinetic modeling of a low-pressure premixed acetylene flame. The detailed kinetic model considers the oxidation of fuel, the formation and growth of polycyclic aromatic hydrocarbons, and particle inception, coagulation, as well as mass growth via surface reactions. A numerical method has been developed, which considers the production of charged particles by thermal ionization as well as coagulation and surface reactions of these particles. The enhancement of coagulation by collisions between charged-charged and charged-neutral particles is rigorously accounted for in the numerical model. The particle size distribution functions for both neutral and charged particles were solved using the method of moments. The computed relative soot volume fractions for neutral and charged soot particles were compared to measurements and found to be in good agreement with them. The results show also that omitting of thermal ionization of soot particles does not lead to significant errors in the simulation of soot formation in the acetylene flame, as long as the nature of the surface reactions between charged particles and gaseous molecules remains the same as that for neutral particles. This result can be generalized to most laboratory laminar premixed and counterflow diffusion flames with flame temperatures not exceeding 2100 K. (Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Combustion and Flame
volume
129
issue
1-2
pages
204 - 216
publisher
Elsevier
external identifiers
  • wos:000175291300013
  • scopus:0036010696
ISSN
0010-2180
DOI
10.1016/S0010-2180(02)00344-9
language
English
LU publication?
yes
id
29335e31-25f4-4840-aa99-19f033c4ddfa (old id 339631)
date added to LUP
2016-04-01 16:12:01
date last changed
2022-01-28 18:01:19
@article{29335e31-25f4-4840-aa99-19f033c4ddfa,
  abstract     = {{The effect of thermal ionization on the growth of soot particles has been analyzed by detailed kinetic modeling of a low-pressure premixed acetylene flame. The detailed kinetic model considers the oxidation of fuel, the formation and growth of polycyclic aromatic hydrocarbons, and particle inception, coagulation, as well as mass growth via surface reactions. A numerical method has been developed, which considers the production of charged particles by thermal ionization as well as coagulation and surface reactions of these particles. The enhancement of coagulation by collisions between charged-charged and charged-neutral particles is rigorously accounted for in the numerical model. The particle size distribution functions for both neutral and charged particles were solved using the method of moments. The computed relative soot volume fractions for neutral and charged soot particles were compared to measurements and found to be in good agreement with them. The results show also that omitting of thermal ionization of soot particles does not lead to significant errors in the simulation of soot formation in the acetylene flame, as long as the nature of the surface reactions between charged particles and gaseous molecules remains the same as that for neutral particles. This result can be generalized to most laboratory laminar premixed and counterflow diffusion flames with flame temperatures not exceeding 2100 K.}},
  author       = {{Balthasar, Michael and Mauss, Fabian and Wang, H}},
  issn         = {{0010-2180}},
  language     = {{eng}},
  number       = {{1-2}},
  pages        = {{204--216}},
  publisher    = {{Elsevier}},
  series       = {{Combustion and Flame}},
  title        = {{A computational study of the thermal ionization of soot particles and its effect on their growth in laminar premixed flames}},
  url          = {{http://dx.doi.org/10.1016/S0010-2180(02)00344-9}},
  doi          = {{10.1016/S0010-2180(02)00344-9}},
  volume       = {{129}},
  year         = {{2002}},
}