Advanced

Amphiphilic Polymers as Additives in Biomedical Polyurethanes. Surface Properties and Morphology

Kober, Maria LU (1997)
Abstract (Swedish)
Popular Abstract in Swedish

Människor har i alla tider försökt reparera och ersätta skadade vävnader i kroppen. Förr användes naturliga material som t. ex. bomull, silke, tagel och läder. Under 1900-talet har flera syntetiska (konstgjorda) material utvecklats, framförallt olika typer av polymerer (plaster), för användning som ersättning av skadade kroppsvävnader. Beroende på vilken typ av vävnad som behöver ersättas krävs olika egenskaper, från hårda material som tänder och höftleder, till mjuka material, som ögonlinser och blodkärl. Polymerer är en stor grupp av material som kan uppfylla kraven på både speciella mekaniska egenskaper och komplicerad design hos en speciell detalj. Material som ska vara i kontakt med kroppens... (More)
Popular Abstract in Swedish

Människor har i alla tider försökt reparera och ersätta skadade vävnader i kroppen. Förr användes naturliga material som t. ex. bomull, silke, tagel och läder. Under 1900-talet har flera syntetiska (konstgjorda) material utvecklats, framförallt olika typer av polymerer (plaster), för användning som ersättning av skadade kroppsvävnader. Beroende på vilken typ av vävnad som behöver ersättas krävs olika egenskaper, från hårda material som tänder och höftleder, till mjuka material, som ögonlinser och blodkärl. Polymerer är en stor grupp av material som kan uppfylla kraven på både speciella mekaniska egenskaper och komplicerad design hos en speciell detalj. Material som ska vara i kontakt med kroppens vävnader (s. k. biomaterial) måste dessutom ha speciella ytegenskaper. Samspelet mellan kroppsvävnad och ett ick kroppseget ämne bestäms nämligen av vilka reaktoner som uppstår mellan ytan på det främmande materialet och omgivningen. Accepterar kroppen inte implantatet (detaljen som sätts in i kroppen) stöts det bort. Ytmodifiering (förändring av ytan) av ett material så att det får en speciell yta ökar möjligheten för kroppen att acceptera det främmande materialet.



I den här avhandlingen har några polyuretaner (en speciell typ av polymerer, PU) med olika hårdhet ytmodifierats med hjälp av tillsats av små mängder ytaktiva polymerer. Avsikten var att polyuretanerna skulle användas till blodkontaktande ändamål.



Ytaktiva ämnen (som bl. a. finns som tensider i diskmedel) består av en vattenlöslig del och en oljelöslig del. Polymerer som är ytaktiva är uppbyggda på samma sätt, men de respektive delarna består av polymerkedjor istället. Olika typer av amfifila polymerer (ytaktiva polymerer) har använts och deras förmåga att påverka polyuretanernas ytegenskaper har undersökts. Den vattenlösliga (hydrofila) delen i de olika amfifila polymererna har varit polyetylenoxid (PEO). Om detta ämne finns på en yta anses det medföra att kroppen accepterar det främmande materialet lättare. Ytegenskaperna hos filmer med och utan amfifila polymerer studerades med hjälp av olika metoder. Utseendet på de amfifila polymererna, rörligheten i matrismaterialen (polyuretanerna) och hur väl den oljelösliga respektive den hydrofila delen av de amfifila polymererna kan fördela sig i polyuretanerna påverkar hur ytorna hos de modifierade filmerna ser ut. De amfifila polymerer som fungerar som ytmodifierare "vandrar" till ytan och lägger sig som ett ytskikt på polyuretanfilmerna. Ice vattenlösliga amfifila polymerer var mer effektiva som ytmodifierare än vattenlösliga additiv.



Undersökningar har också gjorts huruvida de amfifila polymererna bildar miceller (speciella aggregat) i polyuretanerna eller inte. Dessutom har fasseparationen i filmerna med additiv studerats. (Less)
Abstract
The aim of this work was to achieve surface modification of two biomedical polyurethanes and one poly(urethane urea) through the addition of small amounts of amphiphilic copolymers in solution. The matrix polymers used were the poly(ether urethane)s Pellethane 2363-80AE (P80) and 2363-75D (P75) and a poly(ether urethane urea) similar to Biomer (PUUR). The amphiphilic additives consisted of segmented polyurethanes, designated Polymers A, B, and C, commercial ABA block copolymers, Pluronic PE9400 (PE94) and PE6800, and a graft copolymer designated ACRY. Polymers A, B and C were prepared from methylene diphenylene di-isocyanate, poly(ethylene oxide) (PEO) and a fatty acid monoglyceride and/or diethylene glycol as chain extenders. The block... (More)
The aim of this work was to achieve surface modification of two biomedical polyurethanes and one poly(urethane urea) through the addition of small amounts of amphiphilic copolymers in solution. The matrix polymers used were the poly(ether urethane)s Pellethane 2363-80AE (P80) and 2363-75D (P75) and a poly(ether urethane urea) similar to Biomer (PUUR). The amphiphilic additives consisted of segmented polyurethanes, designated Polymers A, B, and C, commercial ABA block copolymers, Pluronic PE9400 (PE94) and PE6800, and a graft copolymer designated ACRY. Polymers A, B and C were prepared from methylene diphenylene di-isocyanate, poly(ethylene oxide) (PEO) and a fatty acid monoglyceride and/or diethylene glycol as chain extenders. The block copolymers were composed of PEO as A-blocks and poly(propylene oxide) as B-blocks. ACRY consisted of a poly(methyl methacrylate-co-2-ethyl-hexyl acrylate) backbone and poly(ethylene oxide) monomethyl ether (MPEO) as side chains.



The addition of amphiphilic polymers into the matrixes, caused considerable changes in the surface properties of the blends compared with the unmodified materials. The mobility of the matrixes , the hydrophilic/hydrophobic balance of the additives and the compatibility between the matrix and additive were shown to be of importance for the surface accumulation of the additives in the blends. High temperatures and water treatment increased the mobility of the additives in the matrixes, especially in the matrix having a glass transition around room temperature, and the affect was permanent for the time period examined. Non-water-soluble amphiphiles were found to be more effective than water-soluble additives. It was found that ACRY formed micellar structures in the P75 and P80 matrixes, with central cores probably consisting of the ACRY backbone and shells consisting of MPEO grafts. Brief protein adsorption measurements and blood coagulation experiments showed that the modified surfaces were generally more biocompatible than the matrixes. (Less)
Please use this url to cite or link to this publication:
author
opponent
  • Prof Chiellini, Emo, University of Pisa, Pisa, Italy
organization
publishing date
type
Thesis
publication status
published
subject
keywords
polymer micelles, phase separation, migration, poly(ethylene oxide), surface enrichment, morphology, polyurethane, additives, Surface modification, amphiphilic polymers, polymer blends, Polymer technology, biopolymers, Polymerteknik
pages
147 pages
publisher
Chemical Engineering 2, Lund University
defense location
Lecture Hall C, Chemical Center,Lund
defense date
1997-12-18 13:15
external identifiers
  • Other:ISRN: LUTKDH/TKKT--97/1047--SE
ISBN
91-628-2790-1
language
English
LU publication?
yes
id
cc783723-95db-4a22-953e-03cc18b21022 (old id 29767)
date added to LUP
2007-06-14 11:55:45
date last changed
2016-09-19 08:45:12
@phdthesis{cc783723-95db-4a22-953e-03cc18b21022,
  abstract     = {The aim of this work was to achieve surface modification of two biomedical polyurethanes and one poly(urethane urea) through the addition of small amounts of amphiphilic copolymers in solution. The matrix polymers used were the poly(ether urethane)s Pellethane 2363-80AE (P80) and 2363-75D (P75) and a poly(ether urethane urea) similar to Biomer (PUUR). The amphiphilic additives consisted of segmented polyurethanes, designated Polymers A, B, and C, commercial ABA block copolymers, Pluronic PE9400 (PE94) and PE6800, and a graft copolymer designated ACRY. Polymers A, B and C were prepared from methylene diphenylene di-isocyanate, poly(ethylene oxide) (PEO) and a fatty acid monoglyceride and/or diethylene glycol as chain extenders. The block copolymers were composed of PEO as A-blocks and poly(propylene oxide) as B-blocks. ACRY consisted of a poly(methyl methacrylate-co-2-ethyl-hexyl acrylate) backbone and poly(ethylene oxide) monomethyl ether (MPEO) as side chains.<br/><br>
<br/><br>
The addition of amphiphilic polymers into the matrixes, caused considerable changes in the surface properties of the blends compared with the unmodified materials. The mobility of the matrixes , the hydrophilic/hydrophobic balance of the additives and the compatibility between the matrix and additive were shown to be of importance for the surface accumulation of the additives in the blends. High temperatures and water treatment increased the mobility of the additives in the matrixes, especially in the matrix having a glass transition around room temperature, and the affect was permanent for the time period examined. Non-water-soluble amphiphiles were found to be more effective than water-soluble additives. It was found that ACRY formed micellar structures in the P75 and P80 matrixes, with central cores probably consisting of the ACRY backbone and shells consisting of MPEO grafts. Brief protein adsorption measurements and blood coagulation experiments showed that the modified surfaces were generally more biocompatible than the matrixes.},
  author       = {Kober, Maria},
  isbn         = {91-628-2790-1},
  keyword      = {polymer micelles,phase separation,migration,poly(ethylene oxide),surface enrichment,morphology,polyurethane,additives,Surface modification,amphiphilic polymers,polymer blends,Polymer technology,biopolymers,Polymerteknik},
  language     = {eng},
  pages        = {147},
  publisher    = {Chemical Engineering 2, Lund University},
  school       = {Lund University},
  title        = {Amphiphilic Polymers as Additives in Biomedical Polyurethanes. Surface Properties and Morphology},
  year         = {1997},
}