Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Myocardin-Dependent Kv1.5 Channel Expression Prevents Phenotypic Modulation of Human Vessels in Organ Culture

Arévalo-Martínez, Marycarmen ; Cidad, Pilar ; García-Mateo, Nadia ; Moreno-Estar, Sara ; Serna, Julia ; Fernández, Mirella ; Swärd, Karl LU ; Simarro, María ; de la Fuente, Miguel A. and López-López, José R. , et al. (2019) In Arteriosclerosis, Thrombosis, and Vascular Biology 39(12). p.273-286
Abstract

OBJECTIVE: We have previously described that changes in the expression of Kv channels associate to phenotypic modulation (PM), so that Kv1.3/Kv1.5 ratio is a landmark of vascular smooth muscle cells phenotype. Moreover, we demonstrated that the Kv1.3 functional expression is relevant for PM in several types of vascular lesions. Here, we explore the efficacy of Kv1.3 inhibition for the prevention of remodeling in human vessels, and the mechanisms linking the switch in Kv1.3 /Kv1.5 ratio to PM. Approach and Results: Vascular remodeling was explored using organ culture and primary cultures of vascular smooth muscle cells obtained from human vessels. We studied the effects of Kv1.3 inhibition on serum-induced remodeling, as well as the... (More)

OBJECTIVE: We have previously described that changes in the expression of Kv channels associate to phenotypic modulation (PM), so that Kv1.3/Kv1.5 ratio is a landmark of vascular smooth muscle cells phenotype. Moreover, we demonstrated that the Kv1.3 functional expression is relevant for PM in several types of vascular lesions. Here, we explore the efficacy of Kv1.3 inhibition for the prevention of remodeling in human vessels, and the mechanisms linking the switch in Kv1.3 /Kv1.5 ratio to PM. Approach and Results: Vascular remodeling was explored using organ culture and primary cultures of vascular smooth muscle cells obtained from human vessels. We studied the effects of Kv1.3 inhibition on serum-induced remodeling, as well as the impact of viral vector-mediated overexpression of Kv channels or myocardin knock-down. Kv1.3 blockade prevented remodeling by inhibiting proliferation, migration, and extracellular matrix secretion. PM activated Kv1.3 via downregulation of Kv1.5. Hence, both Kv1.3 blockers and Kv1.5 overexpression inhibited remodeling in a nonadditive fashion. Finally, myocardin knock-down induced vessel remodeling and Kv1.5 downregulation and myocardin overexpression increased Kv1.5, while Kv1.5 overexpression inhibited PM without changing myocardin expression. CONCLUSIONS: We demonstrate that Kv1.5 channel gene is a myocardin-regulated, vascular smooth muscle cells contractile marker. Kv1.5 downregulation upon PM leaves Kv1.3 as the dominant Kv1 channel expressed in dedifferentiated cells. We demonstrated that the inhibition of Kv1.3 channel function with selective blockers or by preventing Kv1.5 downregulation can represent an effective, novel strategy for the prevention of intimal hyperplasia and restenosis of the human vessels used for coronary angioplasty procedures.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; and (Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
downregulation, extracellular matrix, muscle, smooth, vascular, myocardin, organ culture
in
Arteriosclerosis, Thrombosis, and Vascular Biology
volume
39
issue
12
pages
273 - 286
publisher
Lippincott Williams & Wilkins
external identifiers
  • scopus:85075813039
  • pmid:31597447
ISSN
1524-4636
DOI
10.1161/ATVBAHA.119.313492
language
English
LU publication?
yes
id
2993d507-192c-4c34-8fd6-0eee146fa6b0
date added to LUP
2019-12-17 08:30:48
date last changed
2024-06-26 08:09:12
@article{2993d507-192c-4c34-8fd6-0eee146fa6b0,
  abstract     = {{<p>OBJECTIVE: We have previously described that changes in the expression of Kv channels associate to phenotypic modulation (PM), so that Kv1.3/Kv1.5 ratio is a landmark of vascular smooth muscle cells phenotype. Moreover, we demonstrated that the Kv1.3 functional expression is relevant for PM in several types of vascular lesions. Here, we explore the efficacy of Kv1.3 inhibition for the prevention of remodeling in human vessels, and the mechanisms linking the switch in Kv1.3 /Kv1.5 ratio to PM. Approach and Results: Vascular remodeling was explored using organ culture and primary cultures of vascular smooth muscle cells obtained from human vessels. We studied the effects of Kv1.3 inhibition on serum-induced remodeling, as well as the impact of viral vector-mediated overexpression of Kv channels or myocardin knock-down. Kv1.3 blockade prevented remodeling by inhibiting proliferation, migration, and extracellular matrix secretion. PM activated Kv1.3 via downregulation of Kv1.5. Hence, both Kv1.3 blockers and Kv1.5 overexpression inhibited remodeling in a nonadditive fashion. Finally, myocardin knock-down induced vessel remodeling and Kv1.5 downregulation and myocardin overexpression increased Kv1.5, while Kv1.5 overexpression inhibited PM without changing myocardin expression. CONCLUSIONS: We demonstrate that Kv1.5 channel gene is a myocardin-regulated, vascular smooth muscle cells contractile marker. Kv1.5 downregulation upon PM leaves Kv1.3 as the dominant Kv1 channel expressed in dedifferentiated cells. We demonstrated that the inhibition of Kv1.3 channel function with selective blockers or by preventing Kv1.5 downregulation can represent an effective, novel strategy for the prevention of intimal hyperplasia and restenosis of the human vessels used for coronary angioplasty procedures.</p>}},
  author       = {{Arévalo-Martínez, Marycarmen and Cidad, Pilar and García-Mateo, Nadia and Moreno-Estar, Sara and Serna, Julia and Fernández, Mirella and Swärd, Karl and Simarro, María and de la Fuente, Miguel A. and López-López, José R. and Pérez-García, M. Teresa}},
  issn         = {{1524-4636}},
  keywords     = {{downregulation; extracellular matrix; muscle, smooth, vascular; myocardin; organ culture}},
  language     = {{eng}},
  number       = {{12}},
  pages        = {{273--286}},
  publisher    = {{Lippincott Williams & Wilkins}},
  series       = {{Arteriosclerosis, Thrombosis, and Vascular Biology}},
  title        = {{Myocardin-Dependent Kv1.5 Channel Expression Prevents Phenotypic Modulation of Human Vessels in Organ Culture}},
  url          = {{http://dx.doi.org/10.1161/ATVBAHA.119.313492}},
  doi          = {{10.1161/ATVBAHA.119.313492}},
  volume       = {{39}},
  year         = {{2019}},
}