Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

A program system for self-consistent embedded potentials for ionic crystals

Larsson, Ernst D. LU ; Krośnicki, Marek and Veryazov, Valera LU orcid (2022) In Chemical Physics 562.
Abstract

Embedded-cluster models of crystalline solids are important to allow accurate wave function methods to be applicable to solids. The ab initio model potential method for embedding ionic solids has historically been shown to be a viable tool. While useful, the method has been limited by the need to generate such potentials for each crystal structure and the lack of a freely available program for generating ab initio model potentials. Herein, this is remedied by showcasing a new, AFL licensed, program, SCEPIC, which can be used in combination with Molcas or OpenMolcas codes to derive ab initio model potentials for ionic crystals. The applicability of ab initio model potentials derived via SCEPIC is evaluated for three simple ionic solids:... (More)

Embedded-cluster models of crystalline solids are important to allow accurate wave function methods to be applicable to solids. The ab initio model potential method for embedding ionic solids has historically been shown to be a viable tool. While useful, the method has been limited by the need to generate such potentials for each crystal structure and the lack of a freely available program for generating ab initio model potentials. Herein, this is remedied by showcasing a new, AFL licensed, program, SCEPIC, which can be used in combination with Molcas or OpenMolcas codes to derive ab initio model potentials for ionic crystals. The applicability of ab initio model potentials derived via SCEPIC is evaluated for three simple ionic solids: MgO, CaO and CaF2. The following questions are addressed: (i) the capability of the method to reproduce the density matrix from periodic density functional theory calculations, (ii) the feasibility of performing geometry optimisations, (iii) the possibility to model band gaps of insulators and (iv) the ligand-field splitting of Ni-doped MgO. Going beyond the classical restriction of parametrising ab initio model potentials only at the Hartree–Fock level-of-theory, this work additionally address the sensitivity of results to the underlying Hamiltonian used to derive the potentials. The results demonstrate that good agreement with periodic density functional theory calculations can be achieved, geometry optimisations are feasible and accurate band gaps and ligand-field splittings can be computed.

(Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Ab-initio model potential, Band gaps, CASPT2, Ionic solids, Ligand-field splitting
in
Chemical Physics
volume
562
article number
111549
pages
19 pages
publisher
Elsevier
external identifiers
  • scopus:85134597406
ISSN
0301-0104
DOI
10.1016/j.chemphys.2022.111549
language
English
LU publication?
yes
additional info
Publisher Copyright: © 2022 The Author(s)
id
2b6afc73-ccea-465d-bcb5-c69aa14d5d0c
date added to LUP
2022-08-15 12:51:14
date last changed
2023-04-08 12:25:56
@article{2b6afc73-ccea-465d-bcb5-c69aa14d5d0c,
  abstract     = {{<p>Embedded-cluster models of crystalline solids are important to allow accurate wave function methods to be applicable to solids. The ab initio model potential method for embedding ionic solids has historically been shown to be a viable tool. While useful, the method has been limited by the need to generate such potentials for each crystal structure and the lack of a freely available program for generating ab initio model potentials. Herein, this is remedied by showcasing a new, AFL licensed, program, SCEPIC, which can be used in combination with Molcas or OpenMolcas codes to derive ab initio model potentials for ionic crystals. The applicability of ab initio model potentials derived via SCEPIC is evaluated for three simple ionic solids: MgO, CaO and CaF<sub>2</sub>. The following questions are addressed: (i) the capability of the method to reproduce the density matrix from periodic density functional theory calculations, (ii) the feasibility of performing geometry optimisations, (iii) the possibility to model band gaps of insulators and (iv) the ligand-field splitting of Ni-doped MgO. Going beyond the classical restriction of parametrising ab initio model potentials only at the Hartree–Fock level-of-theory, this work additionally address the sensitivity of results to the underlying Hamiltonian used to derive the potentials. The results demonstrate that good agreement with periodic density functional theory calculations can be achieved, geometry optimisations are feasible and accurate band gaps and ligand-field splittings can be computed.</p>}},
  author       = {{Larsson, Ernst D. and Krośnicki, Marek and Veryazov, Valera}},
  issn         = {{0301-0104}},
  keywords     = {{Ab-initio model potential; Band gaps; CASPT2; Ionic solids; Ligand-field splitting}},
  language     = {{eng}},
  month        = {{10}},
  publisher    = {{Elsevier}},
  series       = {{Chemical Physics}},
  title        = {{A program system for self-consistent embedded potentials for ionic crystals}},
  url          = {{http://dx.doi.org/10.1016/j.chemphys.2022.111549}},
  doi          = {{10.1016/j.chemphys.2022.111549}},
  volume       = {{562}},
  year         = {{2022}},
}