Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Progress of vegetation modelling and future research prospects

Li, Siqi ; Zhang, Xu ; Lu, Zhengyao LU ; Ni, Jian and Lu, Jianhua (2024) In Science China Earth Sciences 67(9). p.2718-2738
Abstract

Terrestrial vegetation is a crucial component of the Earth system, and its changes not only represent one of the most distinct aspects of climate change but also exert significant feedback within the climate system by exchanging energy, moisture, and carbon dioxide. To quantitatively and mechanistically study climate-vegetation feedback, numerical vegetation models have been developed on the theory of ecophysiological constraints on plant functional types. The models eventually can simulate vegetation distribution and succession across different spatial and temporal scales, and associated terrestrial carbon cycle processes by categorizing vegetation into biomes according different plant functional types and their associated... (More)

Terrestrial vegetation is a crucial component of the Earth system, and its changes not only represent one of the most distinct aspects of climate change but also exert significant feedback within the climate system by exchanging energy, moisture, and carbon dioxide. To quantitatively and mechanistically study climate-vegetation feedback, numerical vegetation models have been developed on the theory of ecophysiological constraints on plant functional types. The models eventually can simulate vegetation distribution and succession across different spatial and temporal scales, and associated terrestrial carbon cycle processes by categorizing vegetation into biomes according different plant functional types and their associated environmental factors. Here we review the developing history of vegetation models and provide recent advances and future directions. Before 21st century, static vegetation models, as developed statistical models, can only simulate equilibrated characteristics of vegetation distribution. In last several decades, Dynamic Global Vegetation Models (DGVMs) have been developed to simulate instantaneous responses of vegetation to climate change and associated dynamics, and can be coupled with Earth system models to investigate interactions among atmosphere, ocean, and land. DGVMs are also widely applied to investigate the dynamics accounting for changes in the geographic distribution patterns of land surface vegetation at different spatial and temporal scales and to assess the impacts of terrestrial carbon and water fluxes and land use changes. We suggest that future vegetation modeling could integrate with machine learning, and explore vegetation transient response and feedback as well as impacts of process hierarchies and human activities on climate and ecosystem.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
DGVMs, Ecosystems, Plant functional traits, Plant functional types, Vegetation models
in
Science China Earth Sciences
volume
67
issue
9
pages
21 pages
publisher
Science Press
external identifiers
  • scopus:85200317600
ISSN
1674-7313
DOI
10.1007/s11430-023-1367-1
language
English
LU publication?
yes
id
2d18d8db-53fd-4fad-b843-edf491bcb833
date added to LUP
2024-11-11 14:00:24
date last changed
2024-11-11 14:01:39
@article{2d18d8db-53fd-4fad-b843-edf491bcb833,
  abstract     = {{<p>Terrestrial vegetation is a crucial component of the Earth system, and its changes not only represent one of the most distinct aspects of climate change but also exert significant feedback within the climate system by exchanging energy, moisture, and carbon dioxide. To quantitatively and mechanistically study climate-vegetation feedback, numerical vegetation models have been developed on the theory of ecophysiological constraints on plant functional types. The models eventually can simulate vegetation distribution and succession across different spatial and temporal scales, and associated terrestrial carbon cycle processes by categorizing vegetation into biomes according different plant functional types and their associated environmental factors. Here we review the developing history of vegetation models and provide recent advances and future directions. Before 21st century, static vegetation models, as developed statistical models, can only simulate equilibrated characteristics of vegetation distribution. In last several decades, Dynamic Global Vegetation Models (DGVMs) have been developed to simulate instantaneous responses of vegetation to climate change and associated dynamics, and can be coupled with Earth system models to investigate interactions among atmosphere, ocean, and land. DGVMs are also widely applied to investigate the dynamics accounting for changes in the geographic distribution patterns of land surface vegetation at different spatial and temporal scales and to assess the impacts of terrestrial carbon and water fluxes and land use changes. We suggest that future vegetation modeling could integrate with machine learning, and explore vegetation transient response and feedback as well as impacts of process hierarchies and human activities on climate and ecosystem.</p>}},
  author       = {{Li, Siqi and Zhang, Xu and Lu, Zhengyao and Ni, Jian and Lu, Jianhua}},
  issn         = {{1674-7313}},
  keywords     = {{DGVMs; Ecosystems; Plant functional traits; Plant functional types; Vegetation models}},
  language     = {{eng}},
  number       = {{9}},
  pages        = {{2718--2738}},
  publisher    = {{Science Press}},
  series       = {{Science China Earth Sciences}},
  title        = {{Progress of vegetation modelling and future research prospects}},
  url          = {{http://dx.doi.org/10.1007/s11430-023-1367-1}},
  doi          = {{10.1007/s11430-023-1367-1}},
  volume       = {{67}},
  year         = {{2024}},
}