Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Evaluating the effect of vibration isolation mats on train-induced ground vibrations

Malmborg, J. LU ; Persson, K. LU and Persson, P. LU (2019) 7th International Conference on Structural Engineering, Mechanics and Computation (SEMC 2019) p.85-90
Abstract

In the present paper, the effectiveness of a vibration isolation mat for a railway slab track system is studied using a finite element model of the railway track. The finite elements are formulated in a moving frame of reference following the moving load at a particular speed. The rails are modeled using Bernoulli beams, whereas the track slab and an underlying supporting plate are modeled using Kirchhoff plate elements. The vibration isolation mat is modeled as a continuous visco-elastic layer between the track slab and the supporting plate. The response of the underlying soil is represented through a dynamic stiffness matrix, obtained via the Green’s function for a horizontally layered visco-elastic strata in a moving frame of... (More)

In the present paper, the effectiveness of a vibration isolation mat for a railway slab track system is studied using a finite element model of the railway track. The finite elements are formulated in a moving frame of reference following the moving load at a particular speed. The rails are modeled using Bernoulli beams, whereas the track slab and an underlying supporting plate are modeled using Kirchhoff plate elements. The vibration isolation mat is modeled as a continuous visco-elastic layer between the track slab and the supporting plate. The response of the underlying soil is represented through a dynamic stiffness matrix, obtained via the Green’s function for a horizontally layered visco-elastic strata in a moving frame of reference in the frequency– wavenumber domain. The model accounts for the quasi-static excitation caused by the static axle loads of a vehicle, as well as the dynamic excitation caused by the vehicle running over an uneven rail. The free-field response and the insertion loss obtained with the vibration isolation mat is first evaluated for a harmonic load moving along the track. Band-averaged vibration levels and the insertion loss for a fixed point next to the track are then calculated for a train cart, represented by a 10 degree-of-freedom multi-body system, running at different speeds.

(Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Chapter in Book/Report/Conference proceeding
publication status
published
subject
host publication
Advances in Engineering Materials, Structures and Systems : Innovations, Mechanics and Applications - Proceedings of the 7th International Conference on Structural Engineering, Mechanics and Computation, 2019 - Innovations, Mechanics and Applications - Proceedings of the 7th International Conference on Structural Engineering, Mechanics and Computation, 2019
editor
Zingoni, Alphose
edition
1
pages
6 pages
publisher
CRC Press/Balkema
conference name
7th International Conference on Structural Engineering, Mechanics and Computation (SEMC 2019)
conference location
Cape Town, South Africa
conference dates
2019-09-02 - 2019-09-04
external identifiers
  • scopus:85079243500
ISBN
9781138386969
978-0-429-42650-6
DOI
10.1201/9780429426506-14
language
English
LU publication?
yes
id
2d45af85-97ab-4ea0-a568-98ff8d4725bb
date added to LUP
2020-02-26 11:06:35
date last changed
2024-05-01 06:48:21
@inproceedings{2d45af85-97ab-4ea0-a568-98ff8d4725bb,
  abstract     = {{<p>In the present paper, the effectiveness of a vibration isolation mat for a railway slab track system is studied using a finite element model of the railway track. The finite elements are formulated in a moving frame of reference following the moving load at a particular speed. The rails are modeled using Bernoulli beams, whereas the track slab and an underlying supporting plate are modeled using Kirchhoff plate elements. The vibration isolation mat is modeled as a continuous visco-elastic layer between the track slab and the supporting plate. The response of the underlying soil is represented through a dynamic stiffness matrix, obtained via the Green’s function for a horizontally layered visco-elastic strata in a moving frame of reference in the frequency– wavenumber domain. The model accounts for the quasi-static excitation caused by the static axle loads of a vehicle, as well as the dynamic excitation caused by the vehicle running over an uneven rail. The free-field response and the insertion loss obtained with the vibration isolation mat is first evaluated for a harmonic load moving along the track. Band-averaged vibration levels and the insertion loss for a fixed point next to the track are then calculated for a train cart, represented by a 10 degree-of-freedom multi-body system, running at different speeds.</p>}},
  author       = {{Malmborg, J. and Persson, K. and Persson, P.}},
  booktitle    = {{Advances in Engineering Materials, Structures and Systems : Innovations, Mechanics and Applications - Proceedings of the 7th International Conference on Structural Engineering, Mechanics and Computation, 2019}},
  editor       = {{Zingoni, Alphose}},
  isbn         = {{9781138386969}},
  language     = {{eng}},
  month        = {{08}},
  pages        = {{85--90}},
  publisher    = {{CRC Press/Balkema}},
  title        = {{Evaluating the effect of vibration isolation mats on train-induced ground vibrations}},
  url          = {{http://dx.doi.org/10.1201/9780429426506-14}},
  doi          = {{10.1201/9780429426506-14}},
  year         = {{2019}},
}