Advanced

High resolution mapping of peatland hydroperiod at a high-latitude Swedish mire

Torbick, N.; Persson, Andreas LU ; Olefeldt, D.; Frolking, S.; Salas, W.; Hagen, S.; Crill, P. and Li, C. S. (2012) In Remote Sensing 4(7). p.1974-1994
Abstract
Monitoring high latitude wetlands is required to understand feedbacks between terrestrial carbon pools and climate change. Hydrological variability is a key factor driving biogeochemical processes in these ecosystems and effective assessment tools are critical for accurate characterization of surface hydrology, soil moisture, and water table fluctuations. Operational satellite platforms provide opportunities to systematically monitor hydrological variability in high latitude wetlands. The objective of this research application was to integrate high temporal frequency Synthetic Aperture Radar (SAR) and high spatial resolution Light Detection and Ranging (LiDAR) observations to assess hydroperiod at a mire in northern Sweden. Geostatistical... (More)
Monitoring high latitude wetlands is required to understand feedbacks between terrestrial carbon pools and climate change. Hydrological variability is a key factor driving biogeochemical processes in these ecosystems and effective assessment tools are critical for accurate characterization of surface hydrology, soil moisture, and water table fluctuations. Operational satellite platforms provide opportunities to systematically monitor hydrological variability in high latitude wetlands. The objective of this research application was to integrate high temporal frequency Synthetic Aperture Radar (SAR) and high spatial resolution Light Detection and Ranging (LiDAR) observations to assess hydroperiod at a mire in northern Sweden. Geostatistical and polarimetric (PLR) techniques were applied to determine spatial structure of the wetland and imagery at respective scales (0.5 m to 25 m). Variogram, spatial regression, and decomposition approaches characterized the sensitivity of the two platforms (SAR and LiDAR) to wetland hydrogeomorphology, scattering mechanisms, and data interrelationships. A Classification and Regression Tree (CART), based on random forest, fused multi-mode (fine-beam single, dual, quad pol) Phased Array L-band Synthetic Aperture Radar (PALSAR) and LiDAR-derived elevation to effectively map hydroperiod attributes at the Swedish mire across an aggregated warm season (May-September, 2006-2010). Image derived estimates of water and peat moisture were sensitive (R-2 = 0.86) to field measurements of water table depth (cm). Peat areas that are underlain by permafrost were observed as areas with fluctuating soil moisture and water table changes. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
palsar, lidar, mire, hydroperiod, high latitude wetlands, permafrost, l-band, carbon sequestration, sar data, c-band, radar, imagery, decomposition, polarimetry, parameters, vegetation
in
Remote Sensing
volume
4
issue
7
pages
1974 - 1994
publisher
MDPI AG
external identifiers
  • wos:000306759700006
  • scopus:84865028024
ISSN
2072-4292
DOI
10.3390/Rs4071974
language
English
LU publication?
yes
id
772cf10f-6fa4-4b7b-be37-b4d8c20dd021 (old id 3168203)
date added to LUP
2012-11-29 10:42:20
date last changed
2017-05-21 03:51:45
@article{772cf10f-6fa4-4b7b-be37-b4d8c20dd021,
  abstract     = {Monitoring high latitude wetlands is required to understand feedbacks between terrestrial carbon pools and climate change. Hydrological variability is a key factor driving biogeochemical processes in these ecosystems and effective assessment tools are critical for accurate characterization of surface hydrology, soil moisture, and water table fluctuations. Operational satellite platforms provide opportunities to systematically monitor hydrological variability in high latitude wetlands. The objective of this research application was to integrate high temporal frequency Synthetic Aperture Radar (SAR) and high spatial resolution Light Detection and Ranging (LiDAR) observations to assess hydroperiod at a mire in northern Sweden. Geostatistical and polarimetric (PLR) techniques were applied to determine spatial structure of the wetland and imagery at respective scales (0.5 m to 25 m). Variogram, spatial regression, and decomposition approaches characterized the sensitivity of the two platforms (SAR and LiDAR) to wetland hydrogeomorphology, scattering mechanisms, and data interrelationships. A Classification and Regression Tree (CART), based on random forest, fused multi-mode (fine-beam single, dual, quad pol) Phased Array L-band Synthetic Aperture Radar (PALSAR) and LiDAR-derived elevation to effectively map hydroperiod attributes at the Swedish mire across an aggregated warm season (May-September, 2006-2010). Image derived estimates of water and peat moisture were sensitive (R-2 = 0.86) to field measurements of water table depth (cm). Peat areas that are underlain by permafrost were observed as areas with fluctuating soil moisture and water table changes.},
  author       = {Torbick, N. and Persson, Andreas and Olefeldt, D. and Frolking, S. and Salas, W. and Hagen, S. and Crill, P. and Li, C. S.},
  issn         = {2072-4292},
  keyword      = {palsar,lidar,mire,hydroperiod,high latitude wetlands,permafrost,l-band,carbon sequestration,sar data,c-band,radar,imagery,decomposition,polarimetry,parameters,vegetation},
  language     = {eng},
  number       = {7},
  pages        = {1974--1994},
  publisher    = {MDPI AG},
  series       = {Remote Sensing},
  title        = {High resolution mapping of peatland hydroperiod at a high-latitude Swedish mire},
  url          = {http://dx.doi.org/10.3390/Rs4071974},
  volume       = {4},
  year         = {2012},
}