Advanced

LKB1 signaling pathways in adipocytes - Focus on the AMPK-related kinase SIK2

Henriksson, Emma LU (2012) In Lund University, Faculty of Medicine Doctoral Dissertation Series 2012:94.
Abstract
Adipose tissue does not only store and release energy in response to hormones, it is also known as an endocrine organ, secreting important factors and hormones that influence for example appetite and insulin sensitivity. The association of type 2 diabetes with obesity has been known for quite some time. Understanding the cellular mechanisms of adipocyte function is of great importance in understanding when and why excess adipose tissue becomes dangerous. Signal transduction pathways used for example by hormones to control cellular function, often consists of protein kinases. These enzymes constitute a large part of our genome and are crucial for the regulation of almost all cellular processes. AMP-activated protein kinase (AMPK) is known... (More)
Adipose tissue does not only store and release energy in response to hormones, it is also known as an endocrine organ, secreting important factors and hormones that influence for example appetite and insulin sensitivity. The association of type 2 diabetes with obesity has been known for quite some time. Understanding the cellular mechanisms of adipocyte function is of great importance in understanding when and why excess adipose tissue becomes dangerous. Signal transduction pathways used for example by hormones to control cellular function, often consists of protein kinases. These enzymes constitute a large part of our genome and are crucial for the regulation of almost all cellular processes. AMP-activated protein kinase (AMPK) is known for its various roles in the regulation of metabolism and is activated when cellular energy levels are low, which is reflected in increased levels of AMP. In addition to AMPK, some of its related kinases, including the salt-inducible kinases (SIKs), have also been implicated in the regulation of metabolism. LKB1 is known as a tumor suppressor and was recently found to be required for the activity of AMPK and most of its related kinases, phosphorylating a specific threonine residue in their activation loop. The aim of this thesis was to investigate the regulation of LKB1 signaling pathways in adipocytes, with a focus on SIK2, which is of particulate interest in adipocytes due to its high abundance in these cells. We show that AMPK activity is regulated by LKB1 and CaMKK in adipocytes and describe a regulation of SIK2 and SIK3 by cAMP/PKA signaling. The PKA-dependent phosphorylations of SIK2 and SIK3 were identified and shown to mediate a binding to 14-3-3 proteins, resulting in a re-localization from a particulate fraction to the cytosol, and a decrease in activity, respectively. In addition, we suggest that the transcriptional regulators CREB-regulated transcription co-activator (CRTC) 2, -3 and histone deacetylase (HDAC) 4, are substrates of SIK2 in adipocytes. Based on our findings, we hypothesize that SIK isoforms take part in transcriptional regulation of genes involved in lipid and glucose metabolism in adipocytes, through their action on HDAC4, CRTC2 and CRTC3, and potentially also other transcriptional regulators. We also identified PP2A as an interacting partner of SIK2 in adipocytes and future studies will further evaluate the importance and function of this interaction.

In conclusion, this thesis has revealed regulation of AMPK, SIK2 and SIK3, important for adipocyte function and provided preliminary data connecting SIK2 to both lipid and glucose metabolism in adipocytes. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Moustakas, Aristidis, Ludwig Institute for Cancer Research, Uppsala, Sweden
organization
publishing date
type
Thesis
publication status
published
subject
keywords
adipocytes, signal transduction, protein phosphorylation, LKB1, SIK2, SIK3, cAMP
in
Lund University, Faculty of Medicine Doctoral Dissertation Series
volume
2012:94
pages
89 pages
publisher
Department of Experimental Medical Science, Lund Univeristy
defense location
Belfrage Hall, BMC D15, Lund
defense date
2012-12-07 09:00
ISSN
1652-8220
ISBN
978-91-87189-57-9
language
English
LU publication?
yes
id
55a3b154-9fd1-4f36-b7dc-1e9f716c2635 (old id 3171849)
date added to LUP
2012-11-16 13:07:48
date last changed
2016-09-19 08:44:47
@phdthesis{55a3b154-9fd1-4f36-b7dc-1e9f716c2635,
  abstract     = {Adipose tissue does not only store and release energy in response to hormones, it is also known as an endocrine organ, secreting important factors and hormones that influence for example appetite and insulin sensitivity. The association of type 2 diabetes with obesity has been known for quite some time. Understanding the cellular mechanisms of adipocyte function is of great importance in understanding when and why excess adipose tissue becomes dangerous. Signal transduction pathways used for example by hormones to control cellular function, often consists of protein kinases. These enzymes constitute a large part of our genome and are crucial for the regulation of almost all cellular processes. AMP-activated protein kinase (AMPK) is known for its various roles in the regulation of metabolism and is activated when cellular energy levels are low, which is reflected in increased levels of AMP. In addition to AMPK, some of its related kinases, including the salt-inducible kinases (SIKs), have also been implicated in the regulation of metabolism. LKB1 is known as a tumor suppressor and was recently found to be required for the activity of AMPK and most of its related kinases, phosphorylating a specific threonine residue in their activation loop. The aim of this thesis was to investigate the regulation of LKB1 signaling pathways in adipocytes, with a focus on SIK2, which is of particulate interest in adipocytes due to its high abundance in these cells. We show that AMPK activity is regulated by LKB1 and CaMKK in adipocytes and describe a regulation of SIK2 and SIK3 by cAMP/PKA signaling. The PKA-dependent phosphorylations of SIK2 and SIK3 were identified and shown to mediate a binding to 14-3-3 proteins, resulting in a re-localization from a particulate fraction to the cytosol, and a decrease in activity, respectively. In addition, we suggest that the transcriptional regulators CREB-regulated transcription co-activator (CRTC) 2, -3 and histone deacetylase (HDAC) 4, are substrates of SIK2 in adipocytes. Based on our findings, we hypothesize that SIK isoforms take part in transcriptional regulation of genes involved in lipid and glucose metabolism in adipocytes, through their action on HDAC4, CRTC2 and CRTC3, and potentially also other transcriptional regulators. We also identified PP2A as an interacting partner of SIK2 in adipocytes and future studies will further evaluate the importance and function of this interaction.<br/><br>
In conclusion, this thesis has revealed regulation of AMPK, SIK2 and SIK3, important for adipocyte function and provided preliminary data connecting SIK2 to both lipid and glucose metabolism in adipocytes.},
  author       = {Henriksson, Emma},
  isbn         = {978-91-87189-57-9},
  issn         = {1652-8220},
  keyword      = {adipocytes,signal transduction,protein phosphorylation,LKB1,SIK2,SIK3,cAMP},
  language     = {eng},
  pages        = {89},
  publisher    = {Department of Experimental Medical Science, Lund Univeristy},
  school       = {Lund University},
  series       = {Lund University, Faculty of Medicine Doctoral Dissertation Series},
  title        = {LKB1 signaling pathways in adipocytes - Focus on the AMPK-related kinase SIK2},
  volume       = {2012:94},
  year         = {2012},
}