Gossiping with bounded size messages in ad hoc radio networks (Extended abstract)
(2002) 29th International Colloquium, ICALP 2002 2380. p.377-389- Abstract
- We study deterministic algorithms for the gossiping problem in ad hoc radio networks under the assumption that each combined message contains at most b(n) single messages or bits of auxiliary information, where b is an integer function and n is the number of nodes in the network. We term such a restricted gossiping problem b(n) -gossiping. We show that rootn-gossiping in an ad hoc radio network on n nodes can be done deterministically in time (O) over tilde (n(3/2)) which asymptotically matches the best known upper bound on the time complexity of unrestricted deterministic gossiping(dagger). Our upper bound on rootn-gossiping is tight up to a poly-logarithmic factor and it implies similarly tight upper bounds on b(n)-gossiping where... (More)
- We study deterministic algorithms for the gossiping problem in ad hoc radio networks under the assumption that each combined message contains at most b(n) single messages or bits of auxiliary information, where b is an integer function and n is the number of nodes in the network. We term such a restricted gossiping problem b(n) -gossiping. We show that rootn-gossiping in an ad hoc radio network on n nodes can be done deterministically in time (O) over tilde (n(3/2)) which asymptotically matches the best known upper bound on the time complexity of unrestricted deterministic gossiping(dagger). Our upper bound on rootn-gossiping is tight up to a poly-logarithmic factor and it implies similarly tight upper bounds on b(n)-gossiping where function b is computable and 1 less than or equal to b(n) : rootn holds. For symmetric ad hoc radio networks, we show that even 1-gossiping can be done deterministically in time (O) over tilde (n(3/2)). We also demonstrate that O(n(t))-gossiping in a symmetric ad hoc radio network on n nodes can be done in time O(n(2-t)). Note that the latter upper bound is o(n(3/2)) when the size of a combined message is w(n(1/2)). Furthermore, by adopting known results on repeated randomized broadcasting in symmetric ad hoc radio networks, we derive a randomized protocol for 1-gossiping in these networks running in time (O) over tilde (n) on the average. Finally, we observe that when a collision detection mechanism is available, even deterministic 1-gossiping in symmetric ad hoc radio networks can be performed in time (O) over tilde (n). (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/321130
- author
- Christersson, M ; Gasieniec, L and Lingas, Andrzej LU
- organization
- publishing date
- 2002
- type
- Chapter in Book/Report/Conference proceeding
- publication status
- published
- subject
- host publication
- Automata, Languages and Programming / Lecture Notes in Computer Science
- volume
- 2380
- pages
- 377 - 389
- publisher
- Springer
- conference name
- 29th International Colloquium, ICALP 2002
- conference location
- Malaga, Spain
- conference dates
- 2002-07-08 - 2002-07-13
- external identifiers
-
- wos:000180069500033
- scopus:84869193784
- ISSN
- 1611-3349
- 0302-9743
- DOI
- 10.1007/3-540-45465-9_33
- language
- English
- LU publication?
- yes
- id
- 56c24c45-81e1-494b-b0cc-be7ae4ee44f5 (old id 321130)
- date added to LUP
- 2016-04-01 11:48:44
- date last changed
- 2024-06-03 21:11:05
@inproceedings{56c24c45-81e1-494b-b0cc-be7ae4ee44f5, abstract = {{We study deterministic algorithms for the gossiping problem in ad hoc radio networks under the assumption that each combined message contains at most b(n) single messages or bits of auxiliary information, where b is an integer function and n is the number of nodes in the network. We term such a restricted gossiping problem b(n) -gossiping. We show that rootn-gossiping in an ad hoc radio network on n nodes can be done deterministically in time (O) over tilde (n(3/2)) which asymptotically matches the best known upper bound on the time complexity of unrestricted deterministic gossiping(dagger). Our upper bound on rootn-gossiping is tight up to a poly-logarithmic factor and it implies similarly tight upper bounds on b(n)-gossiping where function b is computable and 1 less than or equal to b(n) : rootn holds. For symmetric ad hoc radio networks, we show that even 1-gossiping can be done deterministically in time (O) over tilde (n(3/2)). We also demonstrate that O(n(t))-gossiping in a symmetric ad hoc radio network on n nodes can be done in time O(n(2-t)). Note that the latter upper bound is o(n(3/2)) when the size of a combined message is w(n(1/2)). Furthermore, by adopting known results on repeated randomized broadcasting in symmetric ad hoc radio networks, we derive a randomized protocol for 1-gossiping in these networks running in time (O) over tilde (n) on the average. Finally, we observe that when a collision detection mechanism is available, even deterministic 1-gossiping in symmetric ad hoc radio networks can be performed in time (O) over tilde (n).}}, author = {{Christersson, M and Gasieniec, L and Lingas, Andrzej}}, booktitle = {{Automata, Languages and Programming / Lecture Notes in Computer Science}}, issn = {{1611-3349}}, language = {{eng}}, pages = {{377--389}}, publisher = {{Springer}}, title = {{Gossiping with bounded size messages in ad hoc radio networks (Extended abstract)}}, url = {{http://dx.doi.org/10.1007/3-540-45465-9_33}}, doi = {{10.1007/3-540-45465-9_33}}, volume = {{2380}}, year = {{2002}}, }